


The first machine Known to have been

invented on planet Earth with the ability to

contain a stored and modifiable program to control

its operation was invented in 1801 by the French

silk weaver* Joseph-Marie Charles Jacquard. It

was known as the Jacquard loom and its programs

were encoded as a series of punched holes on paper

cards* the dominant means of program storage for

the next 170 years. The invention enabled the

creation of beautiful and intricate patterns in

the finest fabric known to man and was the

precursor of the modern computer. The French silk

weavers gained international acclaim for the

unsurpassed quality of their weavings. Their

tradition of producing the world's finest fabrics

had its beginnings with the loom that could be

programmed. French silk is to this day the finest,

smoothest, most carefully crafted of fabrics.



Inside The Commodore

by
Don French



Published by French Silk

P.O. Box 207

Cannon Falls, MN 55009

Manufactured in the United States of America

Library of Congress number 83-090411

ISBN 0-9612422-0-5

Copyright 1983 (C) by French Silk. All rights reserved. No part of

this publication or the associated computer software may be reproduced

in whole or in part without the prior written permission of French

Silk.



Table o-f Con±en±s

Introduct i on 1-1

Chapter 1 Using Develop-64 - I 1-1

Overview 1-1

The main menu 1-2

Using the tools - a tutorial 1-4

Getting going with the editor 1-4

Insert mode 1-4

Error messages 1-4

Modify mode 1-7

List mode 1-8

Insert mode revisited 1-8

Delete option 1-9

Saving a source program 1-18

Chapter 2 Using Deveiop-64 - II 2-1

Preparing to use the assembler 2-1

Loading a source program 2-1

Assembling the source program 2-2

Error messages 2-3

Chapter 3 Using Develop-64 - III 3-1

Running the ML program 3-1

Decoding the program 3-3

Chapter 4 Using Develop-64 - IV 4-1

Using the debugger 4-1

The sample program explained 4-2

Chapter 5 Making the -final product 5-1

Where to put a ML program 5-1

Inside a BASIC program 5-1

Before or after BASIC 5-6

In the cassette buffer 5-7



- 2 -

In sacred RAM 5-7

Chapter 6

Chapter 7

Chapter 8

Chapter 9

The

The

The

The

6510 - A data processor

6519 - The Hardware

The program counter

The A-reg

The X and Y regs

The Stack Pointer

The Processor Status Register

The Negative bit

The Over-Flow bi t

The Break bit

The Decimal mode bit

The Interrupt disable bit

The Zero bi t

The Carry bi t

6510 special characteristics

6519 - the software

Absolute mode

Zero Page mode

Immediate mode

Implied mode

A-reg mode

Relat i ue mode

Indexed modes

Indirect mode

(Indirect),Y

(Indirect),X

6510 - Instruction set

Register-only instruct ions

Memory accessing instructions

Conditional Branch instructions

Jump instructions

Stack push and pull instructions

Pseudo-op instructions

6-1

7-1

7-2

7-3

7-3

7-3

7-5

7-5

7-6

7-6

7-6

7-7

7-7

7-7

7-7

8-1

8-1

8-3

8-4

8-5

8-5

8-5

8-8

8-11

8-11

8-12

9-1

9-1

9-3

9-4

9-5

9-6

9-6



- 3 -

Shift instructions 9-7

Boolean arithmetic instructions 9-9

Arithmetic instructions 9-12

Compare instructions 9-15

Impotent instructions 9-16

Chapter 18 Specifications for Assembly language 18-1

General 18-1

Labels 18-1

Mnemonics 18-1

Standard mnemonics 18-1

The EQU pseudo-op 18-2

The BYT pseudo-op 18-3

Hexadecimal strings 18-3

Literal text strings 18-3

Data constants 18-3

Address constants 18-4

The operand field 18-4

Address expressions 18-5

Terms 18-5

Decimal Format 18-5

Hexadecimal Format 18-5

. Literal Format 18-5

Symbolic label 18-6

Location counter 18-6

Algebraic operators 18-6

Addition 18-7

Subtraction 18-7

Multiplication 18-7

Division 18-7

Exponentiation 18-7

Logical AND 18-7

Logical OR 18-8

Expression evaluation 18-8

The high-order symbol < > ) 18-8

The low-order symbol ( < > 18-9

Complex equations 18-9

The comment field 18-9

Zero page notation 18-18



Chapter 11

Chapter 12

Chapter 13

Appendex A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

- 4 -

Graphics on the Commodore 64

The Video Inter-face Chip (VIC-II)

Bank switching

Multiple character sets

Multiple screens

Color controls

Character colors

Alternate display modes

Multi-color characters

Bi t-mapped graphics

Multi-color bit-mapped mode

Extended background color mode

Spri te Graphics

The 6581 - A sound synthesiser

Register assignment

Tone generation

Wave shape regulation

Fi1ter i ng

Mix ing

Commodore 64 internals

Floating point numbers

Arithmetic routines

Input/Output routines

Mnemonic/Addresing mode table

Code conversion table

Auto-start Cartridges

Commodore 64 Memory map

Sample Bit-mapped plotting

Understanding binary and Hexadecimal

11-1

11-1

11-1

11-3

11-9

11-18

11-18

11-11

11-12

11-13

11-14

11-14

11-15

12-1

12-1

12-2

12-3

12-5

12-6

13-1

13-1

13-5

13-8

A-l

B-l

C-l

D-l

E-l

n

n

O

o

o

D

c

o

n

n

n

n

n

n

n

o

n

o

n

O

F-l



Inside The Commodore 64 Page I-i

Introduction

This book has been written both as a general purpose Commodore

64 and 6516 microprocessor tutorial and as a specific complement to

and guide for the use of a set of software tools. The tools* along

with this book comprise Develop-64, a product of French Silk. While

this book is certainly a useful tool in its own right, its value may

be magnified considerably when used in conjunction with the other

tools. Programmers of all levels of experience should find this guide

a valuable resource.

The book may basically be divided into three sections. The

first section provides information on the use of the Develop-64, the

software. It brings you step-by-step through the mechanics of

creating, modifying, running and debugging machine language programs.

The second section gives a detailed look at the architecture

of the 6510 microprocessor. Its addressing modes, register set and

instruction set are examined. The nature and structure of data is

also explored. The introduction to assembly language is presented in

this section.

The third section is very Commodore 64-specific. It provides

the information which is necessary to utilize the Commodore 64's

built-in programs. It provides memory maps of all of the 64's BASIC

operating system along with the information as to how to use some of

the built-in programs. It describes how to build custom characters,

create sprites and how to produce bit-image graphics and to program

the music synthesiser.

The appendixes contain additional information on the 6516 and

the Commodore 64 along with some useful tables and sample progams.

Also included is a tutorial on binary and hexadecimal number bases.

It is specifically prohibited to make copies of the software or

this book for resale or for distribution to friends, relatives,

associates or anyone else. We hope you will respect the legal and

ethical restrictions which apply to the theft of software, both ours

and everyone else's.
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While this product provides tools which may facilitate the

copying o-f legally protected software, it is not the intent of French

Silk that you put these tools to this use. We oppose and wish to very

strongly discourage the pirating of software. We would also like to

point out that there are severe penalties associated with copyright

violation including fines up to $1M00 and imprisonment of up to one

year (not to mention civil liability). We remind you that programmers

have the same sort of financial obligations as everyone else and when

you make a copy of a software product to give to a friend you are

committing an act of theft against the programmer. In the interest of

promoting the continued development of high-quality and low-cost

software > the consumer must play his and her roles in helping to

eliminate this problem.

Thank you for your cooperation and may all your programs work

the first time. Enjoy Develop-64.

DCF
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Using Develop—64 — I

This chapter will provide an overview of the software tools

which comprise Develop-64. It also will lead you through the first

steps of the use of the tools. It is recommended you go through the

exercise of entering> modifying* assembling? etc. the given programs

in the text as you read. The sample program created in this chapter

will be used in subsequent chapters to illustrate the use of other

functions and capabilities of Develop-64. It is not necessary to

understand the program you enter at this time. It will be explained

in more detail later. This and the next few chapters are designed to

familiarize you with the mechanics of operating Develop-64. Very

detailed explanation of machine languagef the architecture of the 6519

and the Commodore 64 will be presented in subsequent chapters. You

may find it valuable to return to these first chapters after you have

gained more understanding.

Overview

To get started you should have the 64 turned on and the tape

or diskette in the appropriate device ready to load. Load Develop-64

much as you would load any other program, i.e. LOAD "DEVELOP-64",8 for

disk or LOAD "DEVELOP-64" for tape. If you experience trouble loading

Develop-64 be sure you have spelled the name right and that all of

your equipment is in proper working condition. If LOAD ERRORs prevent

you from loading the program or the program just doesn't seem to be

on the media at all and you are sure your machines are in good working

order» you should return the media for replacement.

Start the program in the usual fashion, i.e. by typing "RUN"

followed by CR3 (the symbol used in this book to signify the return

key). Please note that we use the quotes (") frequently in this book

to bracket the response you are instructed to give to various prompts.

The quotes are not a part of what you key into the computer. Key only

what is enclosed within them.

The first question you will be asked relates to where in the

memory space of the 64 you would like Develop-64 to reside. The

default values if you hit CR] will be from $98ee to $BFFF (2648 to

46959). It may be placed anywhere there is 16k available. The
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reasons -for wanting to determine the starting and ending addresses

will be discussed later. For now hit CR] twice.

The message which is now displayed is:

THE MAXIMUM NUMBER OF STATEMENTS YOU MAY HAVE IN A SOURCE

SEGMENT IS NOW ....

The value printed is computed from the starting and ending

addresses given above. Now the screen will get strange for awhile and

then the copyright message will appear followed by the main menu as

described below. After the menu will be a question mark (?).

The main menu

When Develop-64 is initially run and upon exiting from any of

the sub-programs the main menu of possible sub-programs is displayed:

1) EXIT 2) EDIT 3) ASSEM 4) DECODE

5) DEBUG 6) LOAD 7) SAVE 8) NEW

Option 1 of the main menu causes the return to BASIC. Every

sub-program also has number i as the exit option. For the sub

programs this option causes a return to the main menu.

Option 2 causes the editor sub-program to be run. The editor

is used to create assembly language programs from scratch or to make

modifications to them. With it you can insert* delete* modify and

list lines of the source program. A walk-through of the use of the

editor to create a small machine language program follows the

overview.

Option 3 causes the assembler sub-program to be run. The

function of the assembler is to translate programs written in assembly

language into machine language. The assembler finds the assembly

language program, called the "source program11* in memory in the source

program area. The program must have been previously created with the

editor (option 2) or the decoder (option 4) or loaded Dy the loader

(option 6). The source program is assembled bv the assembler and the

resulting machine language program is produced. The listing of the



Inside The Commodore 64 Page 1-3

program is directed to either the screen or the printer. The machine

language may be directed to either an "object" file on tape or disk or

directly POKEed into memory or both. The specifications for the

creation of assembly language programs are given in Chapter 10.

Option 4 selects the decoder as the sub-program to be run. The

decoder does the opposite of the assembler. You specify the starting

and ending addresses in memory which you want to decode and it will

produce the assembly language program which corresponds to the machine

language program in memory. The decoder lists the assembly language

program on the screen and optionally to the printer. It also can

place the generated assembly language program in the source program

area of memory where you may access it with the editor and/or the

assembler.

Option 5 of the main menu selects the debugger. This tool

allows you to run any machine language program a single instruction at

a time. As each instruction is executed it is decoded and all the

internal registers of the 6510 microprocessor are displayed, including

the individual status bits of the processor status register. Any

memory location may be displayed and any memory location in RAM may be

modified as may any of the registers. While single-stepping through a

program any instruction may be bypassed.

Option 6 selects the LOAD sub-program. This sub-program can

load two types of files. It is used to re-load source files and to

load "object files" ( machine language programs which were created

with the assembler). Files may be loaded from tape or disk.

Option 7 of the main menu selects the SAVE sub-program. SAVE

allows you to do two kinds of saves. You may save your source program

which was created with the editor and/or the decoder onto tape or

disk. Source programs automatically have the suffix ".SRC" appended

to the file name you assign. They may be re-loaded into the source

program area by the LOAD sub-program (option 6). Also, blocks of

memory may be saved as "binary" files which may be re-loaded later

with the usual BASIC "LOAD" command. The third kind of saving done by

Develop-64 is done as an option of the assembler. It saves "object"

files to tape or disk which the LOAD sub-program cart then read and

poke into memory. These files automatically have the suffix ".OBJ"
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appended to their file names.

Option 8 is used to clear the source program area. It's use is

required only when you wish to replace the current source program with

another.

Using the tools - a tutorial

The -following tutorial will bring you step-by-step through the

many uses of the tools. The tutorial will not attempt to explain the

assembly language program or much about the syntax o-f the statements

created. For an understanding of the rules of proper assembly

statement construction! see Chapter Id. For an understanding of the

way the various instructions cause the 6510 to behavet read Chapters

6-9. For an understanding of the 64-specific parts of the program

read Chapters 11—13. This tutorial is designed to familiarize you

with the mechanics of creating a working assembly language program*

assembling it, loading it into memory and running it both at normal

speed and at single-step speed. You will also learn how to decode a

machine language program back into assembly language.

Getting going with the editor

Develop-64 is waiting for a menu selection. We wish to create a

source program from scratch so Key a "2" to select the editor.

The editor menu should now be on the screen. The editor's

options are:

1) EXIT 2) LIST 3) INSERT 4) DELETE 5)M0DIFY

As mentioned before* option 1 will return you to the master

menu* i.e. exit the editor. Option 2 will list the source program if

there is one to list. We haven't gotten that far yet. What we want

to do now is to insert lines of a source program into the source

program area. So the option to select is "3". Now the next prompt,

"INSERT AFTER?" will appear.

Insert mode

The question the editor is asking is where we want to start
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inserting our program lines. Each line or statement of assembly

language will be automatically assigned a line number as it is

created. You will see that in a moment. At the start of making a

program the first line number is a "1". So the first insertion will

come after line number "0". That is the correct response at this

time. If you ever try to fool the editor by answering with a line

number higher than the current high line of the program in memory* it

will just repeat the question until you answer something reasonable.

Later* when you wish to go back and add lines to your program you will

specify where you wish to insert your new program statements by giving

the appropriate line number.

Once you have responded to the "INSERT AFTER?" prompt* the

screen will clear and a solitary quote mark (") will appear on the

second line of the screen with a flashing cursor following. This is

the place where lines of assembly language programs are entered. It

is called the "edit window".

Now to enter the first line of the sample program. Without

hitting [R3* key in the statement:

SAMPLE PROGRAM

The semi-colon should be keyed in the first position after the

prompt. If you made errors in keying the above statement you may move

the cursor to the error with the cursor control keys and correct it by

typing over the error or by using the [delete] and [insert] keys.

Until [R3 is hit* changes may be made at will. Each statement entered

may be at most 79 characters long. This is two complete screen lines

minus the quote.

Hit [R] when you have got the line right. You should see the

statement appear a few lines lower on the screen with the line number

i on the left. This statement is a comment. The fact that it is a

comment is signified by the ";" in the first position of the line.

You may place comments anywhere in your program and they have no

restrictions on their format except for the first character. One

restriction does apply to this and all other statements entered with

the editor. Never may you key a quote (" ) character.

Now enter the second statement of the program:

SRC EQLJ251 SOURCE VECTOR
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Be sure to leave a space between the label, "SRC" and the

mnemonic* "EQU". Be sure NOT to leave any space between the "EQU" and

the operand, "251". Not Keying a space between these two fields may

seem unnatural to those who have experience with other

assembler/editors but it saves you a Keystroke and becomes natural

very quickly. The assembly listing and listings produced with the

editor will have a space inserted -for improved readability.

Another space should be present after the operand and be-fore

the comment* "SOURCE VECTOR". This is a typical assembly language

statement. It has all -four possible fields present. The label and

comment fields are not always present and for some instructions the

operand field is not present either. The mnemonic is like the verb of

the statement and must always be present. It must always have a space

before it. If there is a label, there must be only one space

separating the two fields. If there is no label, the first character

must be a space and the mnemonic must start in the second position

after the quote. Comments must always be separated from the preceding

part of the statement by a space. Note that there are two Kinds of

comments, those on lines by themselves and starting with a ";" and

those which are on the same line as the assembly language instruction.

Once you have the statement Keyed just as shown, hit CR3. It

should appear below the previous line with line number "2". Now enter

the remainder of the following short assembly language segment, one

statement at a time. If you make mistakes while entering the program

you may correct them before hitting CR] on the line in question or you

may correct the error later with the modify option.

5 SAMPLE PROGRAM

SRC EQU251 SOURCE VECTOR

DST EQU253 DEST VECTOR

SRCE EQU$D88B ORIG CHAR SET

DSTE EQU$C888 NEW CHAR SET

START EQU*C008

Error Messages

It is possible you may get an error message or two while keying

the program. Errors are signaled by an audible "beep" and by a
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message above the edit window in reverse red letters. The format of

editor error messages is ERR i or ERR 2. When an error occurs, the

line just Keyed will remain in the edit window until it is corrected.

ERR 1 signifies a mnemonic which is not valid. ERR 2 signifies either

a syntax error such as no space before the mnemonic or an extra space

between the mnemonic and the operand. ERR 2 will also be given if the

addressing mode is not a legal one for the mnemonic used. A list of

all the mnemonics and their valid addressing modes may be found in

Appendix A.

To exit the insert mode it is necessary only to key a CR3 with

no further entry in the edit window. Once done* the menu will

reappear and you may select other options as you choose.

It would be useful to try the modify mode now even if no

mistakes were made in the original entry.

Modify mode

To select the modify option key a "5". You will now be asked

where to begin modifications.

"BEGIN AT?" should appear on the screen. Give it the line number

where you would like to begin making modifications. Try a "1". Line

number 1 should now appear in the edit window waiting for your

changes. You may make changes or not as you wish. If no changes are

desired hit CR]. If you wish to make changes* move the cursor to the

place you wish to change, make the modification and when done, hit

CR]. You may use the insert and delete keys if you wish.

Once you have hit CR] the modified line will replace the old

line and will appear below. Now the next line will appear in the edit

window for your examination and possible modification. You will stay

in modify-mode until one of two things happens. Either the last line

of the program has been modified or you terminate modify-mode by over-

keying a "/ " in the first character position of the line put up in

the edit window and hitting CR]. When terminated, the menu will re

appear, and Develop-64 will automatically enter list mode as described

below.



Intidt Tht Commodon 64 Pagt i-8

Ust modt

The source program is listed automatically after exiting -from

insert mode and -from modify mode and after deleting lines and after

loading a source program from tape or disk. In these cases the

listing will be directed to the screen only and the listing will start

with line 1. It is possible to command Develop-64 to begin listing

the program at any time you are in the edit sub-program by selecting

option 2.

Upon selecting the list option* you will then be asked "BEGIN

AT?". Give it a line number, such as"!". Next you will be asked

whether you want the listing to go to the "PRINTER ?". A "Y" or a "N"

is expected. The "N" response is the default, in which case the

listing will go on the screen. Whether the list mode was entered

automatically or by explicit menu selection, while the listing is

proceeding you may pause it at any time by hitting any key. Hitting

CR3 will cause the immediate return to the menu. You may resume a

paused listing by hitting any key except CRJ. Hitting CR3 will cause

a return to the menu.

Insert mode revisited

Insert mode may be entered to insert lines of source in the

middle of a program as well as for creating one from scratch. With

the sample program created thus far, select option 3 to re-enter

insert mode. The "INSERT AFTER?" prompt should be answered with a

"1". Now several lines of the program segment will be displayed on

the screen and the edit-window will be open again. Key a single V

character and CR3. This should cause a new line to be entered and

inserted after line number 1 and it will appear below with the

following statements automatically renumbered. The empty edit-window

will re-appear and you may now key another statement to be inserted

after the one just entered. If you wish, try inserting other

statements. Anything starting with a ";" will be accepted. To leave

the insert mode, like before, hit CR] with a blank line. Listing will

automatically commence.
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Delete Option

If you wish to delete some lines from your program the menu

selection is "4". You will be asked the starting and ending line

numbers to have deleted. As with insert, upon deleting, the remainder

of the program will be renumbered. Listing will commence.

Now you can enter the rest of the program. This program will

be used in the following chapters to illustrate the use of the other

tools. It is also an example of creating your own custom character

set. It is recommended you try it. The effects are unusual.

The following is a list of the complete program. This list is

in the format produced by using the LIST option and a printer. It

inserts a space between the mnemonic and the operand for readability.

It also lines up the comments for readability. When keying the

program remember not to key the extra space and only leave one space

between the operand and the comment. A little practice and it will

become very natural.
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l ;
2 1
3 SRC

4 DST

5 SRCE

6 DSTE
mm

7 |

8 |
9 i

10 START

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 LOOP

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 DONE

45

46

47

48

49

50

SAMPLE

EQU

EQU

EQU

EQU

ENTRY

EQU

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

AND

STA

LDA

AND

STA

LDX

LDY

LDA

PHA

TYA

EOR

TAY

PLA

STA

TYA

EOR

TAY

I NY

BNE

DEX

BEQ

INC

INC

JMP

LDA

ORA

STA

LDA

ORA

STA

RTS

PROGRAM

251

253

$D0€0

*C800

POINT <*C000

*C00O

t»>SRCE

4-SRC+1

♦KSRCE

+SRC

*>DSTE

<-DST+1

♦KDSTE

<-DST

56334

ft*FE

56334

#*FB

1*8

1*0

<SRC),Y

1*7

<DST),Y

**7

LOOP

DONE

<-SRC-H

<-DST*l

LOOP
*1

**4

56334

Ml

56334

SOURCE VECTOR

DEST VECTOR

ORIG CHAR SET

NEW CHAR SET

= 49152)

BUILD SOURCE

VECTOR

AND DEST VECTOR

INTERRUPTS OFF

I/O OUT, ROM IN

1* CHAR MEM PAGES

GET SOURCE BYTE

AND SAVE IT

FLIP CHAR PATTER

RETRIEVE BYTE

AND STORE IT

FIX THE Y-REG

BUMP THE INDEX

AND DO IT AGAIN

PAGE COUNTDOWN

INCREMENT PAGES

OF SRC AND DEST

AND KEEP GOING

ROM OUT, I/O IN

RE-ENABLE

INTERRUPTS

RETURN TO BASIC

n

rs

n

n
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When you have completed the entry of the above program double

check it for accuracy. Once you have made any necessary modifications

the source program should be saved.

Saving a source program

In the main menu, option 6 is selected to save a source

program. Once the SAVE sub-program is entered* you will be asked

whether you wish to save a source or a binary file. The default and

the correct reply here is source ("S"). Hitting CR3 will cause a

source file to be saved. You will next be asked whether you want to

save your source program to tape or disk. Reply as is appropriate for

your system. Finally* you will be prompted for the name you wish to

assign to the file. Whatever name you give* Develop-64 will

automatically append the suffix of ".SRC" When re-loading the same

file in the future you will only be required to specify the base namet

not the suffix. Object files* when saved out of the assembler sub

program will be created with the suffix of ".OBJ". Note that either

type of save will cause any previous version by the same name and with

the same suffix to be deleted and replaced by the file you are now

creating.
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Using Develop—64 — II

Preparing to use the assembler

The assembler sub-program will process a source program and

produce an object program. The object program is the machine language

which is the ultimate objective of writing an assembly language

program. The source program must be in Develop-64's source program

area. A source program may get into the source program area via the

editor, decoder and loader subprograms. In the previous chapter the

use of the editor to create a sample source program was described. If

the source program is still in the source program area you may now

assemble it by selecting option 3 of the main menu. If not* you will

have to create a program with the editor or load a saved source

program with the loader. The procedure for using the loader is given

below.

Loading a source program

Option 6 selects the loader sub-program. The first question

asked is whether you wish to load a source or object file. The

possible responses are "S" and "0". "S" is the default and you need

only hit CR3. You will now be given your choice of loading the file

from disk or tape (D/T). Respond appropriately for your system. The

next question you must answer is what file name Develop-64 is supposed

to find and load. When source files are saved with the SAVE sub

program, the suffix, ".SRC" is automatically appended to the file name

you gave it. It is not necessary to add that now to the file name to

load. The loader will automatically find and load the file with the

name you specified plus the appended suffix.

Finally» you will be asked where in the source program area you

wish to have the source program loaded. That is, after which line

number do you want the file inserted. If you already have a program

in the source program area and want this one to replace it you must

precede the load process with a "NEW11 (option S). It is possible to

merge multiple source files by not NEWing between loads. In this case

you must tell Develop-64 where you want each file inserted and as the

files are loaded they will be inserted accordingly, with the program

already in the source area being automatically renumbered to reflect



Inside The Commodore 64 Page 2-2

the insertion.

In the case of loading a program into an empty source program

area* the correct response to the "INSERT AFTER?" question is "G".

Once the program is loaded the list mode of the editor sub-program

will be automatically entered.

Assembling the source program

To enter the assembler sub-program it is necessary to select

option "3" of the main menu. The -first question you must answer is

"DEC/HEX (D/H)? You are being asked how you wish to see the generated

machine language displayed on the assembly listing. The two possible

responses are "D" and "H". Addresses and data will both be displayed

in the format you select. If you hit CR] the default value of "D" for

decimal will be used. The hexadecimal choice causes the assembly to

run somewhat slower.

The next prompt will be "POKE ?". If you answer "Y" the

generated machine language program will be POKEd directly into the

memory of the computer. This can be dangerous if the memory addresses

where the program is designated to reside overlap the memory space

where Develop-64 itself resides. This is called self-destruction and

will not give pleasant results. There are several ways to avoid this

problem: i) Design the machine language program to reside in "sacred

RAM" starting at $C0ee (49152). 2) Don't select the POKE option. Use

the next option which creates an "object file" which can then be

loaded with a three statement BASIC program. 3) Set the start and end

of Develop-64's address space to addresses which will preclude it from

being in the space which will be occupied by the eventual machine

language program you are creating. This is done at the very beginning

of Develop-64.

All these options are explained in more detail in the Chapter

5. For the sample program it doesn't matter how you respond since the

program is set up to reside in sacred RAM.

The next question, "CREATE OBJECT ?", is asking whether

Develop-64 should build a file of the machine language output which

can then be loaded later with the loader sub-program. This is a

convenient way of saving the machine language program. The loader

sub-program is a very small routine which could be very easily
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incorporated into a BASIC program. This allows you one means of

writing a BASIC program which has machine language subroutines. In

the next chapter we will present just such a BASIC program which calls

the sample program. You should answer "Y" to this question if you

wish to follow the sample program through to its completion.

Once done, the next question is "DEVICE (D/T) ?" This is

asking you whether you wish to save the generated machine language

object file to tape or disk. Answer as is appropriate for your

system. Next, Deyelop-64 wants to know what you want to call the

file. Whatever you respond to "FILE NAME ?" the actual name assigned

will have the suffix of ".OBJ" automatically appended. You may pick

any name you wish but the program given in the next chapter assumes a

file name of "SAMPLE".

Finally> Develop-64 wishes to Know if you want the assembly

listing to go to a printer. If you answer "Y" the listing will go

only to the printer. If you answer "N" the listing will be displayed

on the screen only.

When this final option is selected* Develop-64 will display the

message "NOW ASSEMBLING" and the first pass of the assembler will

commence. When completed, the assembly listing will begin to appear

on the selected listing device. On the screen, the source line will

appear first, followed by the machine language which the assembler

created. The line numbers will appear on the second line along with

the machine language. The machine language is visually separated from

the source by being displayed on the screen in reverse and on the

printer to the right of the source statement. Errors are displayed

both on the printed listing and in reverse red on the screen,

accompanied by a warning "beep".

Error messages

There are four errors which the assembler recognizes. Each is

displayed on the line with the generated machine language in the

format: "ERR 3 FIELD" where the number after the ERR may be 3, 4, 5 or

6 and FIELD will be the actual data the assembler found in error.

ERR 3 means a label specified in an operand cannot be found

anywhere in the source program. ERR 3 can also occur on the first pass

of the assembler and signifies that an EQU statement has a label in

the operand field which has not yet been encountered in the source
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program.

ERR 4 means a relative branch instruction such as a BNB or a

BPL instruction is attempting to specify a branch to an address
outside the range of the instruction.

BRR 5 means an invalid character has been encountered in a
hexadecimal term of an address expression.

BRR 6 means that an address has been specified which is out of

the range of -65536 to 65535.

For detailed descriptions of the specifications for writing

valid assembly language programs see Chapter 10.

While the listing is being generated» it is possible to pause

it by hitting any key. If the Key hit is CFU, the assembly will

terminate and the main menu will reappear. Once it has been paused*

you may continue by hitting any Key except CR3. Hitting CR] will

cause the main menu to reappear. You may at any time re-assemble by

re-selecting option 2 of the main menu. If you have not selected

insert, delete or modify options of the editor or have not done a

source file load since the last assembly! the first pass will be

bypassed, allowing speedier assembly.

If you have actually created the sample program and assembled

it* selecting printer output, you should have received a program

listing similar to the following listing.
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FRENCH SILK DEVELQP-64 ASSEMBLY LISTING

1 1

2 ?
3 SRC

4 DST

5 SRCE

6 DSTE

7 |

8 I
9 t

18 START

11

12

13

14

15

16

17

18

19

26

21

22

23

24

25

26

27 LOOP

28

29

36

31

32

33

34

35

36

37

38

39

48

41

42

43

44 DONE

45

46

47

48

49

58

SAMPLE PROGRAM

EQU 251

EQU 253

EQU *D688

EQU *C888

ENTRY POINT (*C888

EQU SC888

LDA ft>SRCE

STA «-SRC*l

LDA ft<SRCE

STA 4-SRC

LDA ft>DSTE

STA <-DST+l

LDA ft<DSTE

STA «-DST

LDA 56334

AND ft*FE

STA 56334

LDA 4-1

AND ft*FB

STA «-l

LDX M8

LDY ft8

LDA <SRC),Y

PHA

TYA

EOR ft7

TAY

PLA

STA <DST),Y

TYA

EOR ft7

TAY

INY

BNE LOOP

DEX

BEQ DONE

INC <-SRC+l

INC 4-DST+l

JMP LOOP

LDA 4-1

ORA ft4

STA <-l

LDA 56334

ORA ftl

STA 56334

RTS

SOURCE VECTOR

DEST VECTOR

ORIG CHAR SET

NEW CHAR SET

- 49152)

BUILD SOURCE

VECTOR.

AND DEST VECTOR

INTERRUPTS OFF

I/O OUT, ROM IN

ft CHAR MEM PAGES

GET SOURCE BYTE

AND SAVE IT

FLIP CHAR PATTERN

RETRIEVE BYTE

AND STORE IT

FIX THE Y-REG

BUMP THE INDEX

AND DO IT AGAIN

PAGE COUNTDOWN

INCREMENT PAGES

OF SRC AND DEST

AND KEEP GOING

ROM OUT, I/O IN

RE-ENABLE

INTERRUPTS

RETURN TO BASIC

251

253

53248

51288

49152

49152

49154

49156

49158

49168

49162

49164

49166

49168

49171

49173

49176

49178

49188

49182

49184

49186

49188

49189

49198

49192

49193

49194

49196

49197

49199

49288

49281

49283

49284

49286

49288

49218

49213

49215

49217

49219

49222

49224

49227

169 288

133 252

169 8

133 251

169 286

133 254

169 8

133 253

173 14 228

41 254

141 14 228

165 1

41 251

133 1

162 8

168 8

177 251

72

152

73 7

168

184

145 253

152

73 7

168

288

288 239

282

248 7

238 252

238 254

76 34 192

165 1

9 4

133 1

173 14 228

9 1

141 14 228

96
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If you did not select the printer option* the listing you got

on the screen should have been similar* except that the machine

language is on a line by itself. If there are any differences*

particularly in the machine language portion of the listing* there is

something significantly wrong with your source program. If you

received errors while assembling you must find the source of your

mistake* use the editor to correct it and go back and re-assemble.

Once it looks right* proceed to the next chapter.
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If you did not select the printer option, the listing you got

on the screen should have been similar, except that the machine

language is on a line by itself. If there are any differences,

particularly in the machine language portion of the listing, there is

something significantly wrong with your source program. If you

received errors while assembling you must find the source of your

mistake, use the editor to correct it and go back and re-assemble.

Once it looks right, proceed to the next chapter.
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Using Develop-64 - III

Loading and running the machine language program

If you have created and assembled the sample program described

in the past two chapters and have created an object file as described

you can now use the following BASIC program to load and run the

program. Note that the first two lines of the program are written

for the disk user but the cassette user can eliminate line 7 and

change line 5 to: 5 OPEN i,i,e,"SAMPLE.OBJ"

5 0PENl,8,2,n8:SAMPLE.0BJ,S"

7 CL0SE15:0PEN15,8,15:INPUTttl5,A,B*,C,D:IF A THEN

PRINT A,B*,C,D:CLQSEl:CL0SE15:ST0P

18 INPUT#1,N: IFN=-1808 THEN CLOSE1s GOTO30

28 IF N<1 THEN POKE P,-N: P=P+l:G0T018

25 P=N:60T018

38 POKE 648,196: POKE 56578,PEEK<56578) OR 3:

POKE 56576,PEEK<56576) AND 252: SYS 49152

48 POKE 53272,<PEEK<53272) AND 248) OR 2

58 PRINT "CCLR3 MIRROR, MIRROR ON THE CEILING"

It is assumed that the name you gave to the file when the

assembler sub-program asKed for file name was "SAMPLE". If it was

something else, substitute that for "SAMPLE" in line 5.

The three POKES in line 38 are set-up preliminaries in

preparation for running the machine language program. They could have

just as easily been done in the machine language program. Chapter 11

on graphics programming explains in detail the process which is being

performed here.

The jump into the machine language program is accomplished by

the SYS 49152. Note that the first non-EQU instruction in the

assembly language program has an address of 49152 ($C000). This is

the first executable statement of the program. It is called the entry

point of the program. Its address was determined by the EQU
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immediately preceding it. As explained in Chapter 10, the address in

RAM where the machine language program gets POKEd is set each time an

EQU is encountered in the source program. The assembler writes the

address expressed in the EQU to the file as a positive decimal

number. It writes the bytes of machine language to be POKEd as

negative numbers. The little loader routine thus can identify every

EQU and change the address at which to start POKEing subsequent

machine language.

The POKE in line 40 of the BASIC program could also have been

included in the machine language program. Its function is also

explained in Chapter i 1 in the section labeled multiple character

sets.

If all went as planned, the results of running the above

program should be apparent. All screen output from now on will appear

upside down. (Try listing the BASIC program, for example). You may

escape from this mode only by turning the machine off or by typing

SYS 64738 CR3 or by doing some POKEs to switch the character set back

to its usual state.

If the program did not seem to work as advertised* you will

need to back up and try to find the error. Please, before calling the

author, do your best to try to find the problem. Look for

discrepancies between your source program and that listed in the book.

If you got an error message on trying to load the object file, find

out why. Go back and re-assemble if other strange things occur.

Select the POKE option and then use the decoder sub-program, described

below, to decode the machine language to compare the generated

assembly language with the original sample program. (Note: the

listing of the sample program given in this book came directly from

Develop-64 and DOES work. It is also highly unlikely that Commodore

has made a change in the design of the 64 which will cause the sample

program to be ineffective.)

On the other hand, if you have exhausted all other

possibilities and it certainly appears that something is amiss, please

send us a copy of your Develop-64, a written description of the

problem, and any other relevant information and data files which can

assist us in finding the source of the problem.
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Decoding the program

Now that you have a working copy of the sample program in

memory it would be a good time to see what the decoder can do for you.

If you just ran the sample BASIC program which loaded and ran the

machine language program you can get back to normal characters without

losing the machine language program by typing SYS 64738. If the

machine language program is not in memory you should put it there by

assembling the source program and selecting the POKE option to POKE

the output into memory as the program is being assembled.

Load and run Develop-64. Select the decoder option of the main

menu* option 4. Your next menu will be:

1) EXIT 2) PRINTER 3) SCREEN 4) INSERT

All three options to decode machine language will cause the

generated assembly language to appear on the screen. If option 2 is

selected the output will go to your printer as well. If option 3 is

selected the lines of assembly language will be inserted into the

source program area where they may be modified and/or assembled and/or

saved. If insert is selected the "INSERT AFTER ?" prompt will be

given and you must tell Develop-64 where you want the source inserted

in the current source program. If there is already a program in the

source program area and you want this one to replace it* it will be

necessary to clear the area with the NEW option (8) of the main menu

before proceeding with the decoder sub-program.

In every case, the first prompt will be "DEC/HEX (D/H) ?",

asking whether the generated source should have addresses and data in

hexadecimal or decimal format. Hex causes the decoder to run about

twice as slow as decimal.

The next prompt will be "START, END ?•', asking for the

addresses in memory between which you would like to decode. You may

give your answers in either hex or decimal. Hex values must be

preceded by a"$". The end point may be expressed as data value

instead of an address. By precedeing the data value with a "#", the

decoder will be directed to decode until it recognizes the specified

data value in the op-code of an instruction. For example, if you

want to decode until the end of a subroutine, you could specify an end

address of #96 or #$68 which will cause the decoder to decode until it

encounters a RTS instruction (value of 96 or $60).
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If you have the sample machine language program in memory you

may now decode it. For the purposes of this demonstrated, select

option 4 to INSERT. Answer "0" to the "INSERT AFTER?11. Specify a

starting address of $C000 and an ending address of #$60, the op-code

for the RTS instruction.

The generated output should look very much but not exactly like

the original source program which created it. The differences are due

to the fact that the decoder can not create comments. Nor does it

generate labels.

The decoder sub-program can decode any memory block in the

computer, including the operating system. It can also decode

cartridges if the cartridge is activated after power-on. The reason

for this exception is that if a cartridge is in place when the power

is turned on the power-up program in the computer will automatically

give control to the program in the cartridge. Since most cartridges

will not allow any means of giving control back to another program

there is no way for Develop-64 to be run. The most common way to

defeat this is to have the cartridge plugged into an expansion chassis

which has switches which activate and de-activate the cartridges which

are plugged into it. Then the procedure is to power-up with the

cartridge de-activated, load and run Develop-64, then activate the

cartridge. Since the only time control is passed to the cartridge is

at power-up, the cartridge is not now in control, yet it is

addressable by the decoder. There are some cartridges which are

designed to cause BASIC to be "switched out" when they are activated.

These cartridges may not be possible to decode with Develop-64.

As a matter of curiosity, you could now exit the decoder and

enter the assembler and re-assemble the decoded program. The machine

language which is generated will be exactly the same as the machine

language which was generated from the original source program.

Below is a listing of the re-assembled output of the decoder.

Note that the generated machine language from the assembler is

identical to the generated machine language of the original assembly.
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FRENCH SILK DEVELOP-64 ASSEMBLY LISTING

1

2

3

4

5

6

7

8

9

ie

u

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

39

31

32

33

34

35

36

37

38

39

49

41

EQU

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

AND

STA

LDA

AND

STA

LDX

LDY

LDA

PHA

TYA

EOR

TAY

PLA

STA

TYA

EOR

TAY

I NY

BNE

DEX

BEQ

INC

INC

JMP

LDA

ORA

STA

LDA

ORA

STA

RTS

49152

#208

<-252

#0

♦-251

#200

<-254

1*0

♦•253

56334

#254

56334

4-1

#251

♦•1

#8

#0

(251),Y

#7

(253),Y

#7

3-15

3+9

4-252

♦•254

49186

♦-1

#4

M

56334

#1

56334

49186

49213

49152

49152

49154

49156

49158

49160

49162

49164

49166

49168

49171

49173

49176

49178

49180

49182

49184

49186

49188

49189

49190

49192

49193

49194

49196

49197

49199

49200

49201

49203

49204

49206

49208

49210

49213

49215

49217

49219

49222

49224

49227

169 208

133 252

169 0

133 251

t6? 200

133 254

169 0

133 253

173 14 220

41 254

141 14 220

165 1

41 251

133 1

162 8

160 0

177 251

72

152

73 7

168

104

145 253

152

73 7

168

200

208 239

202

240 7

230 252

230 254

76 34 192

165 1

9 4

133 1

173 14 220

9 1

141 14 220

96
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Using Dev»lop-64 - IV

Using the debugger

The debugger sub-program provides the capability of running a

machine language program one instruction at a time. As each

instruction is executed* the internal registers of the Commodore 64's

6510 microprocessor are displayed* including the individual bits o-f

the status register. The instruction to be executed is also

displayed* both in machine language and in assembly language. The

capability is provided to bypass the execution of any instruction and

to display and modify any memory location while in the process of

running the program. The debugger sub-program may be selected by

selecting option 5 of the main menu. The menu of debugger options is:

1) EXIT 2) START S/S 3) EXECUTE 4) BYPASS

5) MEMORY DISP/MOD

For the purpose of demonstrating the features of the debugger

you should have loaded into memory the program created* assembled*

loaded and run in the previous chapters.

Option 2 is the menu option to set the address of the next

instruction to be executed. It will be followed first by the "DEC/HEX

(D/H) ? prompt* then the "START ADDR ?" prompt* asking for the

starting address. Valid replies are decimal numbers in the range of 0-

65535 and hexadecimal numbers in the range of $0000-$FFFF.

Option 3 is the default option and may be selected by hitting

CR3. It is not to be used until option 2 has been selected to set the

first address to execute. Selecting this option causes the current

instruction to be executed. This will be clarified as you single-step

through the sample program.

Option 4 will cause the instruction about to be executed to be

bypassed. Rather than execute the displayed instruction* the

instruction following the displayed one will be displayed.

Option 5 causes Develop-64 to enter the memory display/modify

mode. This is also followed by the "START ADDR" prompt* requesting

the starting address of displaying/modifying.



Inside The Commodore 64 Page 4-2

The sample program explained

At this time you can see the "slow-motion" execution of the

sample program. If you don't Know much about machine language or the

architecture of the 6510 microprocessor this exercise may not make a

lot of sense to you. You may want to skip ahead and read the Chapters

6-9 to gain an understanding of the machine. It could also be helpful

to just walk through the following explanation prior to having a

fuller understanding just to familiarize yourself with the mechanics

of using this tool. Either wayt if you are just getting started with

machine language> it is recommended you return to this chapter after

having studied the following chapters,

Key a "2" if you wish to single step through the sample

program. Answer the "START ADDR" prompt with IC000, the address of

the entry point of the program. The first instruction of your program

should now appear on the screen.

As each instruction is about to be executed, it is displayed in

both machine language and in assembly language. The processor status

(PS) register is broken into its individual bits (N = negative, V =

overflow, B = break mode, D = Decimal mode, Z = Zero, I = interrupts

inhibited, C = Carry). The other registers displayed are the A-reg,

the X-reg, the Y-reg, and the Stack Pointer (SP). Upon execution of

each instruction, the registers are loaded from these save areas in

memory:

A-780 X- 781 Y-782 PS- 140

If you wish to modify or pre-initialize any of the registers

at any time you may do so by entering the Memory-Modify mode and

modifying the above locations.

If, while single-stepping through some program, you should

execute a RTS or PLA or PLP without first having pushed something onto

the stack with a JSR or PHA or PHP, a stack underflow will occur. A

TXS instruction setting the SP to some out-of-range value will also

cause stack underflow. Overflows are caused by repetitive PHA's PHP's

or JSR's without corresponding PLA's PLP'S or RTS's until the maximum

stack depth has been exceeded. In the event of underflows and

overflows, a "STK ERR" message will be displayed. Execution may
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continue if desired but results are likely to be unexpected if your

monitored program is expecting to find some significant information in

the stack (like a return address).

Certain machine language programs are written to modify the

Stack directly by storing data in the high end of page i. Executing

these instructions in debugging mode will not cause the desired stack

modification effect. In fact, it is quite likely that Develop-64 will

actually crash upon the execution of such instructions. Since it is

written partially in BASIC* any instructions which modify the BASIC

vectors or other information vital to the running of BASIC programs

may also cause unwanted results.

As Develop-64 single steps through a machine language program,

it checks each op-code encountered for validity. If an invalid op

code is encountered, the message "OP-CODE = xxx" (where xxx is the

encountered op-code) will appear where the mnemonic would otherwise

appear. Develop-64 will not try to execute invalid op-codes. Nor will

it try to execute BRK or RTI instructions. All of these will be

automatically bypassed.

If the sample program is now in memory and you have selected

the single-step option and specified address $C000 as the starting

address and selected decimal as the display format, you should see on

the screen the assembly language statement "LDA #208" followed by the

address 49152 and the machine language equivalent of the above

assembly language statement: 169 208.

On the next line will be the display of the registers, the A-

reg, X-reg, Y-reg and SP(the stack pointer), prior to the execution of

the displayed instruction. You will also see the status register

displayed broken down into its component bits, the Negative, overflow,

Break, Decimal, Interrupt disable, Zero and Carry flags. The

registers will have no particular significance at this point because

they were never initialized. Note, however, the value of the A-reg

because after executing the instruction it will probably change. The

Zero flag, if it is a one now should also change as a result of the

execution of the instruction. The Negative flag is also affected by a

LDA instruction.

Note the disassembled statement is not identical to the

assembly language statement you originally wrote. It is equivalent

but not identical. The original statement was: LDA #>SRCE. This

discrepancy occurs because The Monitor can't tell what went into the

assembler, only what came out and it does the best it can in
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reconstructing a valid assembly language statement from the machine

language it has to work with.

To execute the instruction* hit return. If all is well, the

next instruction of the sample program will be displayed and the first

instruction will have been executed. You may verify that by checking

the A-reg. It should be of value 208 now. The zero bit should be a 6

because the result of loading the A-reg is non-zero. Note that the

resulting value in the A-reg does have the high-order bit on (i.e. the

number in the A-reg is greater than 127 or *7F). Consequently, the

Negative flag should now be turned on.

The next instruction which is now up for execution will store

the A-reg in location 252. None of the status flags are affected by

this instruction so we should see no change when we execute it. Push

CR] and see.

This would be a good time to look at the Memory Display/Modify

mode. Rather than hit CR] at this time, key "5 CRT1.

Upon entering this mode, the address where you left off in

single-stepping will be saved and the "START ADDR" prompt will be

displayed. You may enter the first address you wish to examine or

modify. The address may be in the range 0-65535 or $0000-$FFFF. To

look at location 252, key a "252 CRT1. The address (252) will be

displayed followed by the contents of the specified location. In this

case it should be 208 because that is the value we Just stored there.

The value of the data stored at the requested address will be

displayed and the prompt" VAL?" will follow. You may do one of three

things. You may eXit the Memory mode by keying "X CRT'. You may

modify the displayed location by keying a value in the range 0-255 or

$00-$FF. Or you may continue viewing the next sequential memory

locations by hittng CR].

You may now change the contents of location 252 if you wish by

keying some new value. The next location will now be displayed,

memory location 253. Note its contents and modify them if you wish.

To just scan through memory, simply continue to hit CR] each

time a value is displayed. When you wish to return to the main menu,

key "X CR]" for exit. Once this has been done, the instruction you

left off at will be redisplayed along with the menu. If you

modified location 252 you shtfuld now re-enter M-mode by entering the

"5" option, and address 252 again. When the value you stuck in 252 is

displayed, change it back to 0 and hit CR], and when location 253 is



Inside The Commodore 64 P*gt 4-5

displayed, hit "X CR3" to get out again.

The next instruction in the program is now displayed. It is a

LDA instruction. Note the registers still have the same contents as

before the M-mode excursion. The A-reg will be loaded with the value

0 by the instruction to be executed next.

This program is setting up a vector in locations 25 i and 252

of zero page to address character ROM at $D000. A loop in the program

will sequentially move characters from that area in memory to an area

where an alternate character set will be built. Hit CR3 and see the

next instruction which is a Store of the A-reg to location 251. Hit

CR3 again. The next four instructions build another vector at 253 and

254. This is the vector which points to the location where the new

character set will reside. Hit CR3 to execute each of these

instructions. You may verify that locations 251-254 contain the

addresses of the two vectors by going into memory display mode if you

wish.

The next three instructions cause the timer to be turned off.

Location 56334 is one of the registers associated with the hardware

timer which interrupts the Commodore 64 60 times a second. As

explained in more detail later, the character ROM starting at $D000

(53248) shares its address space with input/output (I/O) registers.

To read the character ROM, it is necessary to switch the I/O out and

switch the ROM in. The only problem with doing this is that the I/O

registers are used in the servicing of interrupts. So, while the I/O

is switched out to access the character ROM the timer must be turned

off so as to discontinue interrupts. One of the things the operating

system does when it processes the interrupts every 1/60 th of a second

is to poll the Keyboard to see if any Keys have been pressed. Since

we need to have that function intact while running the debugger, we

can't really allow the interrupts to be disabled. So it is necessary

to bypass the instruction at 49173 which accomplishes the disabling.

This is where the bypass option is useful. When that instruction is

displayed, about to be executed, press "4" instead of CR3.

The switching-in of the ROM is accomplished in the next three

instructions. The 6510, as explained at the end of Chapter 7, uses

location 1 as an I/O port and the 2-bit controls whether the ROM or

the I/O registers are switched in. The AND #251 instruction

accomplishes the turning off of that bit. Now, since we had to leave

the interrupts enabled, we can't switch out the I/O registers since

they are used in processing the interrupts. If you should make the
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mistake of executing the instruction at 49180 the computer will hang

and there will be no recourse except to turn it off and back on again

and start over.

Next, the X and Y registers are set up to count the number of

times through the following loop. The instruction which is at 49186

was labeled LOOP in the original source. This instruction will load

the A-reg with the byte at the location computed from the sum of the

contents of the Y-reg and the address vector in locations 251 and 252.

An unfortunate conseouence of not being able to switch in the

character ROM is that the data being loaded is not the same as it is

when the program is run at full speed.

If you take the value stored at location 252 (208)» which is

the page # of the character ROM) and multiply it by 256 and add the

value stored in location 251, (0)* you will get the base address to

which the Y-reg is added. All vectors work the same way: add the

contents of the first byte of the vector to 256 times the second byte

to get the address being referenced.

The next instruction* the PHA* saves the retrieved byte onto

the stack. Note the value of the SP (stack pointer) before and after

executing this instruction.

Next* there is a three instruction trick played with the Y-reg

to cause the eventual turning upside-down of the characters. The

flipping of each character top-to-bottom requires a knowledge of how

character information is stored in memory. It turns out to be a

fairly simple process but one which can be better understood by

reading Chapter 11. Suffice it here to say that a simple manipulation

of the Y-register modifys the sequence in which the character

information occurs in the new character set.

The PLA instruction pulls the saved byte of character

information back off the stack. You can see the stack pointer being

modified again as the PLA instructions is executed. Once the byte is

back in the A-reg* it is stored in the new character set in a

position determined by the source vector at 253*254 and the value of

the Y-reg.

Since the Y-reg was manipulated to cause the flipping over of

the character* it must now be fixed back to its original value before

the modification. The next three instructions, TYA* EOR #7, and TAY

do the trick. This is just the reverse of the operation which

modified it in the first place.

Once the Y-reg is restored, its use as a loop counter is
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employed. The INY instruction bumps it up by one and the next

instruction tests it to see if it has gone past 255, its maximum

value. I-f it has, it will have the value o-f zero. The BNE

instruction tests the zero bit of the status register and as long as

it is off (a zero), the branch will be executed and the next

instruction to be executed will be at th£ top of the loop at 49186.

Once the Y-reg gets incremented past 255 to 0* the program will "fall

through" to the DEX instruction. This will happen after the 256

sequential bytes of data in the first page of the character ROM have

been moved to the new character set location.

Stepping through a few cycles of the loop would be instructive

for the newcomer to machine language programming. There are eight

pages of 256 bytes each of character information which needs to be

moved. The Y-reg is used not only to count through the 256 bytes of

each page but also to index the address where data is being retrieved

from and stored to. If you step through the loop eight times and

record the value of the Y-reg prior to executing the instruction at

49186 and prior to executing the instruction at 49194 some insight may

be gained into the technique employed. Go through it another eight

times and see that the pattern repeats.

You may continue through the rest of the program to see it to

completion without going through 2048 (8 times 256) cycles of the

loop. Here is another place the bypass option is useful. To get out

of the inner loop which terminates at the BNE instruction at 49201 you

may select option 4 instead of executing the branch instruction. This

will cause the program to "fall through" to the next instruction, the

DEX. Following the DEX is the instruction which tests to see if all

eight pages have been processed. If not* the vectors for the source

and destination LDA and STA instructions are increased and the inner

loop is entered again for another 256 iterations. To get past doing

this again, the JMP instruction at 49210 must be bypassed.

The last seven instructions in the program switch the I/O back

in and re-enable the interrupts and return to the calling program.

These may be executed without danger. Executing the last instruction,

the RTS, will cause a stack error. This is what should be expected

because the return from subroutine was not preceded by a jump to

subroutine. The SYS instruction in the BASIC program was the intended

means of getting to the machine language program. The RTS is the

intended means of returning to the BASIC program."
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Making the Final Product

There are several places where machine language (ML) programs

may be designed to reside. These include: i) Inside a BASIC program

2) Before or after the BASIC program. 3) In the cassette buffer,

$33C-$3FB (828-1919) 4) In "sacred" RAM at $Ce90-$CFFF (49152-53247).

5) Anyplace that Develop-64 itself does not reside. 6) Anywhere in

memory that a "mini-loader" program can address.

Inside a BASIC program

To get a ML program into a BASIC program so that it may be

saved with the BASIC program and reloaded right along with it, a

couple of techniques may be used.

The first way is to load a BASIC program with several REM

statements which take up space and will be overlaid by the ML. The

token for the first REM must not be overlaid but everything after it

can be.

To find the address where the REM statement of your BASIC

program is stored it is necessary to understand how BASIC programs are

structured. Each line of a BASIC program is stored in memory in a

condensed fashion. All the "keywords", such as GOTO, FOR, PRINT, etc.

are stored as a single byte of data, called a token, preceding the

condensed BASIC line is four bytes of system information. The first

two bytes are a link address pointing to the next BASIC statement

following this one. The second two bytes are the line number of this

BASIC statement. At the end of each statement is a single byte with

value 0. This is the statement terminator.

The last BASIC statement in the program has a link address of

0. The first statement in the program is pointed to by an address

vector stored in locations 43 and 44. Once your program is in memory

you may find the address of any given statement by searching for the

line number with the following short statement which may be entered in

direct mode (does not have to be in a program).

I=43:FORJ=iTOie0ee:I=PEEK(I)+256*PEEK(I+i):IFPEEK(I+2)+
PEEK(I+3)*256O...THEN NEXT

Where the "..." appears you must key the statement number you
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are searching for. When the "READY." reappears on the screen* the

variable I will contain the address of the first byte of the statement

you are searching for. Simply PRINT I. The value printed will be the

address of the first byte of the link address which precedes the

actual statement in memory. The address of the first byte of the

statement will be four greater than the value of I.

The ML program you wish to include with your BASIC program may

be of greater length than what may be accomodated by a single BASIC

REM statement. The solution is to have multiple REMs. Before

overlaying them* it will be necessary to change the link address

preceding the first one to point to the statement following the batch

of statements to be overlaid. So it is necesary to find the address

of the statement following the overlay area using the technique above*

and to modify the link at the beginning of the area accordingly.

For example* if the address of the first statement to be

overlaid is 5000 and the address of the first statement after those

to be overlaid is 6000* the following POKEs would do the job: POKE

5001,6000/256: POKE 5000*6000-PEEK<5001)*256. This would allow you to

save a ML program from 5005 (the byte after the REM token), to 5999

(the byte before the terminator of the last REM overlaid).

There are two places within your BASIC program which make sense

to use for the overlay area. There are advantages and disadvantages

to both.

If you place it anywhere but the beginning, the problem exists

of having the machine language program shifting locations every time a

modification is made to the BASIC program. This can be a major

problem if the ML has non-relocatable code* e.g. a JSR instruction to

some fixed address within the program. Non-relocatable programs

should therefore overlay the beginning of a BASIC program where

modifications to subsequent statements of the BASIC program will not

cause any shifting of the position of the ML. .
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An example of such a program would be:

19 GOTO108

28 REM1234567890123456789012345678901234567890...

30 REM1234567890123456789012345678901234567890...

40 REM1234567890123456789012345678901234567890...

50 REM1234567890123456789012345678901234567890...

60 REM1234567890123456789012345678901234567890,..

70 REM1234567898123456789012345678901234567890...

80 REM1234567890123456789012345678901234567890...

90 REM1 234567890123456789012345678901234567890 ...

100 REM START OF THE PROGRAM

110

The drawbacks to this scheme are potentially serious. The

biggest drawback is that nowhere in the ML program may there appear

the value of 0. That could be a real bother to get around in some

situations. This limitation is due to the -fact that BASIC interprets

the 0 as a line terminator and any modifications or even SAVEing the

program will cause havoc. The other drawback is that certain bytes

will cause the listing of the program to appear strange or not appear

at all. In fact, the value of 264 <$CC) will cause BASIC to choke

upon listing it. It will give a SYNTAX? error. The program will run

OK but will not be listable beyond that point. You may list the

remainder of the program by typing "LIST 30-" for example if the

syntax error stopped the listing prior to statement 30. This might be

considered a sort of protection feature, as it will cause the

opposition difficulty in listing your program (at least for awhile).

The other place which is a likely candidate for storing the

program within a BASIC program is at the end of the BASIC program.

Here, the non-relocatability problem is present but the problem with

having a 0 in the ML is solved. If you can be sure you will never

modify your BASIC program there is no relocatability problem. It only

exists if you add to or delete characters in the BASIC program and the

passenger program gets relocated.

The best technique for adding the ML at the end differs from

the REM technique explained above. First, find the end of your BASIC

program. This is as simple as: PRINT PEEK(45) + PEEK(46) * 256. The

value printed will be the end of BASIC and the start of variable

storage. To add a passenger at the end you need to change the vector
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at 45 and 46 to increase the program size by as much as you need for

your ML component. If for example the end of your BASIC program is

10009 and you wish to add a ML program of length 2000* you would Key

the following: POKE 46,12000/256: POKE 45, 12000-PEEK(45)*256. The

next thing to do is to SAVE the program and immediately re-LOAD it.

When the machine language is loaded into the reserved area it will not

appear on the listing and it may have zeros or any other value. Now,

any additions and deletions, SAVEing and re-LOADing of the BASIC

program will Keep the ML intact. Referencing addresses within it from

your BASIC program is most easily accomplished by computing the

address as a displacement from the end of the program. For example,

if the entry point of the ML program is 500 bytes from the end of the

program, your call to it would be SYS PEEK(45)+PEEK<46)*256-500. This

way, no matter where the program gets shifted to by changes to the

BASIC program, the SYS statement is always correct.

Once you decide where you want your ML program to reside the

problem is to get it there. There are a few options. You first need

to find the address of the beginning of the machine language program,

i.e. the address inside the BASIC program where the ML program will

reside. This address must then be the address expressed in the

operand of the EQU statement in the ML program which immediately

precedes the first actual byte of ML to be generated. (Every EQU

encountered resets the address of where succeeding ML gets stored).

There is a loader sub-program which is a part of Develop-64.

It is possible to use it to load the object file containing the ML

into the area you have reserved in your BASIC program. It is also

possible to use the POKE option of the assembler sub-program to

directly POKE the ML into the reserved area. A third choice is to

write a brief loader in BASIC as illustrated in the sample program in

chapter 8. All of these options have one thing in common. They all

involve having two BASIC programs in memory at the same time, the

BASIC program you are trying to add the ML to and the program which is

doing the adding.

This is easily accomplished. First, load the BASIC program to

be impregnated. Next, print the values of locations 43, 44, 45 and 46

(e.g. ?PEEK(43), etc.). Write these down. Next, change the value

stored at 44 to one greater than what is in 46. Now load the program

which will do the loading of the ML and POKE ing it into the reserved

area of the first BASIC program. This program will now load after the

end of your BASIC program. (This technique of changing the load
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address of BASIC programs is useful also -for placing Develop-64 in a

memory location which will not conflict with a program which you wish

to decode or debug).

Running the second program* be it Develop-64 or a mini-loader*

to load the object file or to assemble the source program and PORE out

the ML will cause the ML to be placed into the space you have

carefully reserved for it by the preceding operations.

Once done* it is necessary to save the BASIC program with its

embryo. To do this* you must restore the values of 43* 44* 45 and 46

(POKE 43*...: POKE 44,...- etc.) with the values you recorded

previously. Immediately follow this with a SAVE of the first program.

The SAVE function of the Commodore 64 causes whatever is between the

addresses pointed to by 43*44 and 45*46 to be saved. When you re-LOAD

the BASIC program it should be carrying its ML child* ready to deliver

(providing it was well conceived in the first place).

The final way of getting ML into a BASIC program is the hardest

and ugliest way available. This is to take the listing of the

assembler and create a string of DATA statements with one decimal

value for every byte of generated ML and to include a FOR NEXT loop

reading every value and POKEing it into the desired memory locations.

For programs which need to be self-documenting this may be the right

solution. Anyone reading ^the BASIC program will have all the

information needed to get the program to work. This is why so many

magazines use this clumsy approach in their articles.

The following approaches all assume that the ML will not be a

part of some BASIC program. They all require some means of getting

the ML into memory. For each case* the techniques for accomplishing

this are the same. They are the same techniques as described above

for getting the ML into a reserved space in a BASIC program* i.e.

using Develop-64 to POKE the ML or to LOAD it from a created object

file or with a mini-loader as in Chapter 8. For stand-alone ML

programs* once they have been loaded by one of these means, they may

be SAVEd by the "binary" SAVE feature of the SAVE sub-program of

Develop-64. This will then allow them to be loaded with the normal

LOA^'name"^ statement for disk or LOAD"name" for cassette.

If you wish to do a binary save without Develop-64 in memory*

the following routine will accomplish it for you.
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18 TD=1:REM FOR DISK TD = 8

20 POKE 781,TD: POKE780,1: P0KE782,2: SYS 65466

30 INPUT"START,END"$A,B: INPUT"FILE NAME";A*

40 POKE780,PEEK<202)-llsPOKE781,0:POKE782,2;SYS6546?

50 POKE780,251: P0KE252,A/256:P0KE251,A-PEEK<252)*256

60 P0KE782,B/256:P0KE781,B-PEEK<782)*256:SYS654?6

This program illustrates the ability to call kernal routines

directly -from BASIC. The A-reg, X-reg and Y-reg may be set up in

locations 780-782 respectively before doing a SYS and the called

routine will be entered with these registers pre-initialized. Upon

returning from the called routine, the above memory locations will

contain the values of the registers upon exiting the routine. This

can be a convenient way to communicate with your machine language

program from BASIC.

Before or after Basic

The upper limit of the memory space which BASIC believes it

has available for BASIC programs is maintained in an address vector at

locations 55,56. At 52,53 is another vector which BASIC uses to set

the highest memory address usable for string storage. The beginning

address, as mentioned above is pointed to by a vector at 43,44.

BASIC starts storing strings at its highest available memory location

and works back down. The free memory available in a BASIC program is

the space between the high end of variable storage and the bottom of

string storage. Strings are continually filling up the free memory

gap as they are created by the program. Only when free memory is

exhausted will BASIC clean up the string area for future string usage.

This is what is known as "garbage collection" and what occasionally

causes BASIC programs to pause for a while before continuing. The

result of this system of string management is that no memory between

the start of BASIC and the "top of memory" is free from possible

destruction by the BASIC program.

It is possible to save ML program segments in a space which

will not be molested by BASIC programs if you modify the two vector

sets at 51,52 and 55,56 so that they point to an address below the ML.

Or you could modify the start of BASIC vector before loading the BASIC
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program. In either case, BASIC will not even Know of the existence of

that memory space and will not try to save anything there.

Cassette Buffer $33C - $3FB (828 - 1019)

There is a serious problem with putting.the ML in the cassette

buffer if you don't have a disk drive. Whatever program you use to

load the object file with will itself use the cassette buffer. And

so, as it is reading the object file it is destroying the POKEd ML.

If you have a diskette based system, there is no problem.

In sacred RAM $C0ee - *CFFF (49152 - 53247)

No protection from BASIC need be implemented when the program

is up here. BASIC can't get to this area. It therefore makes an

ideal place for ML programs. The only disadvantage is that the ML

cannot be loaded along with the BASIC program. It must be loaded

separately or by the BASIC program.
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The 651O — A Data. Processor

Since Develop-64 is focused on the development of software

through the creative use of machine language, it will be necessary to

first understand the machine before learning its language.

You're probably aware that there is something inside the case

of the Commodore 64 which is Known as the 6510 microprocessor. This

is the heart of the Commodore 64. It is a slightly modifided version

of the 6502 which is the heart of the VIC 20, the Apple, the Atari,

the PET, KIM, AIM, SYM, OSI and a few other microcomputers. It is a

product of MOS Technology, a wholly owned subsidiary of Commodore

Business Machines.

The 6510 is an integrated circuit. That is, it is a single

chip of silicon which has built into it, sort of like etched onto it,

the electronic circuitry which connects thousands of microscopically

smali electronic components. These components are deposited on the
silicon by some marvel of modern technology which is beyond the scope

of this text. We won't go into how the electronics are created or how

they function electronically. We are interested here in how to use

this machine and how it fits into the environment of the Commodore 64

personal computer.

The piece of silicon called the 6510 is packaged in a piece of

plastic or ceramic material about one inch by two inches. It has 40

little bug-like legs called pins which connect the internal circuitry

to the outside world. These pins plug into a circuit board which has

other similar appearing chips of silicon, each with its own set of

pins and its own internal characteristics, different from the

characteristics of the 6510. Each of the chips has its own specific

function and together they are combined, through their connecting pins

and the circuit etched on the printed circuit board into which they

are plugged, to make a microcomputer.

This will become more and more clear as we describe what each

of the component chips are for and how they work and how they

communicate with one another. The description of the functional

characteristics of the 6510 will completely define the processor from

the programmer's standpoint. The electrical or electronic

characteristics are of no interest to us as we have no need to

understand the machine at that level.

The 6510 is a data processor. It is a machine which performs
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simple operations of data manipulation under the control of a stored

program. Both the data and the program are stored in memory devices

which are integrated circuits electrically connected to the 6510.

Programs are a special class of data and we will explain programs

after we discuss data in a more general sense.

Data is information. It can be the balance of your checking

account or the grade your physics teacher gave you or the position of

PAC-MAN on your video screen. Information! as it is stored inside the

computer's memory devices is coded by a special set of simple rules.

Memory devices are composed of thousands of cells, or storage

locations, where the data is kept. Each cell is composed of eight

switches which can be turned either on or off. When the letter "A" is

pressed on the keyboard of your Commodore 64, some electronic

circuitry will automatically create a pattern of eight switch settings

which is uniquely identified as the pattern for the letter "A". This

is the code for "A". Every character has its own code and it is

different from all the other character's codes. There are only 256

different unique codes which can be constructed from eight switch

settings. There are therefore only 256 possible different characters

which can be represented and stored in the memory chips of the

Commodore-64. That's sufficient to handle A-Z, 0-9, all the special

characters and the graphics characters.

These switches are usually called "bits". Bit is short for

binary digit. A digit may have 10 possible valuest 0-9. A bit may

have two possible values, 0-1. A bit which is turned on may be

thought of as having the value of 1 and if it is off, it is a 0. So

characters are represented as a string of eight bits with bit values

of either 0 or 1. The actual bit string for the letter "A" is

01000001. The coding scheme used is an international standard called

ASCII, which stands for American Standard Code for Information

Interchange.

The 6510's data link with the memory devices is called the data

bus. This is nothing more than a set of eight lines, or electrical

connections, between the memory chips and the 6510. When the 6510,

under control of a program, wishes to either transfer data to or from

a memory device, it sends an electrical signal on the R/W (Read/Write)

line, telling the device which direction the data is to go. Since the

memory device can store thousands of characters of data, it is

necessary for the 6510 to tell it which storage location it wishes to

get data from or send it to. It does this through another set of
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electrical connections called the address bus. Every storage cell

within the memory device has a unique address associated with it and

when the signal comes to do a data transfer, the memory device is

designed to use the information sent on the address bus to know which

cell is being selected. Each data cell holds eight bits of

information. This basic unit of data, called a byte, is transferred

all at once along the eight parallel electrical connections Known

collectively as the data bus.

The address bus is very similar to the data bus except it has

sixteen parallel electrical connectors. Like the data bus, the address

bus information is coded in binary. That is, each of the sixteen

lines may have only one of two possible states, a 0 or a 1, presented

to the devices as 0 or +5 volts. The buses are connected directly to

the pins which go inside the plastic package and connect to the

internal microcircuitry on the silicon chips. The sixteen bit address

bus allows for 65536 different addressable memory locations where data

may be stored.

Finally, there is a control bus which contains lines which

help to control the various chips in the Commodore 64. The R/W line

mentioned above is one of the control signals. With the exception of

the interrupt lines, discussed later, we don't need to know much about

the control bus.

Because the 6516 transfers and processes data eight bits at a

time, it is Known as an eight bit parallel processor. Appendix goes

into much more detail on the format of the data as it is stored in the

memory devices. It is strongly recommended you read it.

Memory devices come in two basic varieties as of this writing.

ROM is read-only memory. When the power is turned off ROM doesn't

lose its contents. ROM is a kind of chip which may be "Read" but

not written to. Its contents are "burned-in" at the factory. There

is a similar kind of memory device called a PROM which stands for

Programmable ROM and it may be modified by a special piece of hardware

called a PROM programmer. It must be erased by shining an intense

ultraviolet light on its top surface for some prescribed length of

time.

Both of these differ from the other main kind of memory device

which is called RAM. RAM is badly misnamed. It should be called MOM

for MOdifyable Memory or RAW for Read And Write. RAM stands for

Random Access Memory, which means you can extract data from it in any

sequence you want. The same thing is true of all currently available
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types of memory,including ROM.

Anyway, the differences between RAM and ROM is that a program

can write to RAM and change its contents and when the power is turned

off the contents of RAM are lost, whereas ROM cannot be modified by

any program under any circumstances and when the power is turned off,

the contents of ROM are kept intact. In the Commodore 64, all of the

operating system programs and the BASIC interpreter are in ROM. That

is why you can run BASIC programs as soon as you turn the machine on,

without having to load anything from tape or disk.



Iniidt Tht Commodort 64 Pagt 7-1

The Processor

The 6516 microprocessor chip is a 6502 microprocessor with a

twist. It executes exactly the same instruction set and has the same

addressing modes as the 6502. It has some additional -features which

render it more power-ful than the 6502 and we will look at these at the

end of this chapter. In the meantime the following discussion will

describe the 6502 and it will apply equally to the 6510, the

microprocessor which controls the Commodore 64.

The 6502 is a machine. Its moving parts are electrons and the

only work it does is with data. It has some internal data storage

which is identical in nature to the data storage in the memory devices

to which it is attached through its external connectors. The internal

storage is known as the machine's registers. The registers are eight

bits wide and there are only seven of them. Each register has some

special characteristics in the way the 6502 can utilize the data

contained in it. The data processed by this machine is stored in the

external memory and the registers. Processing consists of

manipulating the data in some logical sequence which results in

accomplishing some desired goal. The 6502 processor does its

processing of data by interpreting and executing "instructions".

Instructions are data. They are stored in the memory devices

as eight bit bytes which are precoded ( programmed ) to make the 6502

do some desired operation. The first byte of each instruction is

called the Operation Code. The 6502 has pre-programmed circuitry

built in to its microelectronics, etched onto its silicon chip, which

can decode operation codes and figure out what it is supposed to do

next based on the bit structure of the operation code. This logic

comes with the 6502. The bright electronic engineers who designed the

6502 at MOS Technology back in 1975 figured out how to make it

interpret bit structures and to take whatever action each operation

code was designed to make it do. They preplanned a set of data

manipulation operations which they thought would be useful for a

microprocessor to be able to do and then set about designing the

machine and the operation codes so that those operations could be

interpreted and performed. The way the processor is programmed by you

the programmer is for you to place in the memory of the computer a

sequence of instructions designed to make the 6502 do some presumably
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useful task. You choose the instructions carefully from the set of

available instructions which the 6502 can perform. You code these

instructions in the language which the machine can understand* machine

language. Each instruction has a specific bit pattern which is

understood by the 6502 to mean perform some operation and use one of

the 13 possible addressing modes.

If you have an assembler you can write the 6502 instrucions in

an understandable format which makes some sense to humans when they

read it. The assembler will then convert the human understandable

program into a machine undersandable sequence of bit patterns (bytes).

ASM/EDT, which comes with Develop-64 is such a program for the

Commodore 64. The next section tells you how to use it. In this

section we will explore the 6502's architecture, its registers, its

instruction set and its various addressing modes. First, the

registers.

The Program Counter

The 16-bit Program Counter Register is actually two 8-bit

registers, the PCL and PCH registers. These two registers are always

used as a pair. The "PCH" stands for Program Counter High and "PCL11

stands for Program Counter Low. Together, they are used by the 6502

to form a sixteen bit address pointer. The 6502 moves the contents of

these two registers to the address bus when it wants to fetch an

instruction from some memory chip attached to the 6502.

The Program Counter tells the 6502 where the next instruction to

be executed is located in memory. When the computer is turned on, an

initialization process occurs automatically. This process includes

moving the data contained in addresses $FFFC and $FFFD directly into

the PCL and PCH respectively. Addresses such as this which are stored

in memory and point to the starting point of some other program are

called "vectors". This is how the 6502 finds the address of its first

instruction to be executed. So, every 6502 must have the address of

the beginning of the first program to be executed prestored at $FFFC»

$FFFD (65534,65535). This must obviously be in ROM.

This initialization process occurs at power-on time and

whenever the RESET button (available on some expansion chassis but not

on the standard Commodore 64) is pushed. After each execution of an

instruction by the 6502, the Program Counter is incremented to the

next instruction, and so the program flow occurs.
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Tht A-reg

The A-reg may be thought of as the Arithmetic register. It is

often called the Accumulator. Like all the registers, it is a one-

byte (8-bit) register. It is the place where arithmetic operations

occur. Instructions like ADC ( Add with Carry ) and SBC ( Subtract

with Carry ) cause data to be added to or subtracted -from the A

register. The A reg may be loaded (new value brought into it) with an

instruction such as LDA (Load the A-reg). Its contents may be stored

out to some memory location with an instruction such as STA (Store the

A-reg). The address in memory where data is loaded-from and stored-to

is specified by -further addressing information provided to the 6502 by

the program in a manner discussed in the next chapter.

References to "STA" or "LDA" instructions are referring to the

assembler language English-like mnemonic which gets translated into a

machine language instruction recognizable by the 6502. There is a one

for one correspondence between assembly language statements and

machine language instructions.

The X and Y registers

There are two other "working" registers called the X and Y

registers. These are also known as the index registers. These are all

eight bit storage registers in the 6502 chip itself. The X and Y

registers are used mostly in addressing functions as explained next

chapter. The X and Y registers may both receive their contents (be

loaded) from memory with instructions such as LDX and LDY (Load the X

and Load the Y registers). They may be saved (stored) in memory with

STX and STY instructions. They may also be incremented* decremented,

and compared to data in external memory.

Stack Pointer (SP)

The second 256-byte block of memory ($0100-$01FF) is used by

the 6502 in a special way. It is called the Stack. The Stack is a

special storage block which is automatically utilized by certain

instructions. Its primary reason for existence is to all&w subroutine

"nesting" and to allow for the smooth handling of interrupts.

Subroutines are program segments which can be executed by many
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different programs. They are sub-programs, which are jumped-to and

returned-from. They save having to write commonly used program

segments over and over again. The stack is the 6502's communication

mechanism for remembering where a subroutine was "called" from. The

JSR (Jump to Subroutine) instruction is explained in detail in Chapter

5. Suffice it here to say that the JSR causes the program to Jump to a

subroutine in such a way that the subroutine can return to the

instruction after the JSR once it is done doing its processing. The

6502 saves the return address on the stack when a JSR occurs. It

pulls it off the stack when the RTS (return from Subroutine) occurs.

The position of the next available stack location for recording return

addresses is kept in the SP. The SP is initialized by the Commodore

64 start-up program to the value of $FF at power-on and RESET time.

The high-order byte of the stack address is always $01. This is fixed

inside the 6502. The first time a JSR instruction is executed* the

address of where to return to is pushed onto the stack at $01FF and

$0iFE. The SP is then decremented by two so that the new value of the

SP is $01FD. The subroutine called by the JSR may then call

additional subroutines and the return addresses will be stored below

the initial return address. There may be up to 128 levels of

subroutines calling other subroutines. Each subroutine must have as

its last instruction a RTS (return from subroutine) instruction which

causes the 6502 to load the PC with the saved address from the stack

and to increment the SP by two. Thus the return to the address from

which the subroutine was called.

Interrupts are caused by an electrical signal to the 6502 from

the outside world. There are two interrupt lines attached to the pins

of the 6502. One of them, the NMI line* will cause the 6502 to be

interrupted regardless of what it is doing. This is called the Non-

Maskable Interrupt. This facility is provided so that hardware which

has critical timing requirements may cause the 6502 to service them

immediately. It is also provided as a means of unconditionally

breaking into the processing of the machine if it is suspected that

something has gone awry in a program and there is no other way to sieze

control of the machine short of turning it off and turning it back on

again.

The other kind of interrupt is a maskable interrupt. A means

exists to prevent the interrupt from being serviced. An interrupt may

be "masked" (made so it can't be seen by the 6502) by the means of an

"interrupt disable" bit in the Processor Status register. Maskable
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interrupts are those whose electrical connections are to the IRQ pin

of the 6502.

Both kinds of interrupts are handled in about the same way by

the 6562. The 6502 finishes processing the instruction which was in

progress when the interrupt signal was recognized. It then saves the

PC on the stack just as if a JSR had been executed. Additionally, it

saves the Processor Status Register on the stack and decrements the

stack by three. It now loads the PC with the address found in

location $FFFA and $FFAB for a NMI interrupt or $FFFE and *FFFF for a

non-maskable interrupt. These locations must have been pre-programmed

to contain the addresses of the programs which were written to service

the interrupts.

The interrupt processing routines must be exited via a RTI

instruction (Return from Interrupt). This acts like the RTS

instruction except that the Processor Status Register is reloaded from

the stack before the PC is pulled from the stack. In this fashion,

the interrupted program may continue where it was interrupted and the

status of the machine will be as it was at the time of interruption.

The stack is also used by the PHA and PHP instructions to

store the A-reg and the P-reg respectively in the stack. This is used

to pass information to the subroutine. More information about these

instructions may be found in Chapter 5.

The Processor Status Register

The Processor Status Register is a collection of eight bits,

sometimes called flags* which reflect and control the operation of the

6502. The bit assignment of the P-reg is:

P-reg bit position 76543218

Status-bit label W BDIZC

The Negative Bit

11N" is the Negative-bit. It is turned on by the processor

upon the execution of certain instructions. It reflects whether the

result of an addition or subtraction is negative or not. A i value in

the Negative bit indicates a negative result. This bit is set by load

instructions and compare instructions too. See the chapter on the

6502 instruction set for a complete explanation of each instruction
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and how each affects the various status bits.

The Overflow Bit

The "V" bit is the overflow bit. It reflects whether or not

"two's complement" overflow has resulted from a SBC (Subtract with

Carry) instruction. It is also set by the BIT instruction. See the

descriptions of those instructions for a more complete explanation.

The Break Bit

The "B" bit is set by the processor when a BRK instruction is

executed. The BRK instruction causes an interrupt to occur. It is a

software interrupt* used mostly in debugging machine language

programs. The BRK interrupt is processed almost like a maskable

interrupt. The same vector is used by the 6502 to find the address of

the interrupt processing routine. The only way the processing

routine can know if the interrupt was a software or hardware interrupt

is by examining the "B" bit in the Processor Status Register which has

been stored on the stack. The BRK is not maskable, but it uses the

maskable interrupt vector. Also, the return address stored on the

stack is the address of the BRK instruction plus two.

The Decimal Mode Bit

The "D" flag in the P-reg is a cue to the processor to do all

ADC and SBC instructions in Decimal mode. In decimal mode* the data

being added or subtracted will be assumed to be composed of two

decimal digits per byte. Each digit is coded as a four-bit pattern

having the range of values $0 - $9. The range of values which can be

contained in a byte is 0-99 decimal. The name of this data type is

Binary Coded Decimal (BCD).

If the Decimal mode is clear* the ADC and SBC instructions

will treat the data being added and subtracted as eight-bit binary

values in the range 0-255.

The "D" bit may be set and cleared by the program with SED and

CLD instructions.
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The Interrupt Disable bit

The "I" flag is the interrupt-disable flag. It may be set with

the SEI instruction and cleared with the CLI instruction. When sett

only non-maskable and software interrupts may occur. When Clear* all

interrupts are enabled.

The Zero bit

The "Z" flag is set like the "N" flag, by arithmetic and load

and compare instructions. If the result of these operations gives a

zero result, the Z-flag is set. Otherwise it is cleared.

The Carry bit

The "C" flag is the Carry bit. It is set by addition,

subtraction, shift and compare instructions as well as the specific

SSC and CLC instructions.

The N, V, Z and C bits may all be tested by conditional branch

instructions. A full explanation of this facility is provided in the

following chapters.

The 6510 special characteristics

The 6510 has a built-in Input/Output (I/O) port. There are

eight pins on the 6510 which may be connected to other pieces of

hardware. Through these pins, numbered 0-7, data may be transfered one

bit at a time. The connected external pieces, of hardware may

transfer data directly to and from the memory of the computer. The

data must be placed in memory location i for it to be transferred to

the connected I/O device. This is the same address where the data

passed by the external device to the 6519 will be found.

The individual bits of location 1 may be programmed to be either

input bits or output bits. This is accomplished by setting the

corresponding bits of location 0 to reflect the direction of data

transfer. A i in any given bit position of location 0 will cause data

to be transferred from the corresponding bit position of location i to

the device attached to the corresponding I/O pin of the 6510. A 0 in

any given bit position of location 0 will cause data to be transferred
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from the device attached to the corresponding I/O pin of the 6510 to

the corresponding bit position of location i. Input bits are those

which are turned on or off by the connected external device as it

alters the voltage level of the electrical signal which appears at

the I/O pin on the 651 e. When the device puts a high voltage (+5

volts) signal on the connecting pin and the data direction register is

set as input* the value 1 will appear in the corresponding bit

position of memory location i. A low signal (0 volts) will cause the

value 0 to be stored in the corresponding bit position of location 1.

Output bits are those which are stored in location 1 by some

program running on the 6510. The value of the bit to be transferred

(either a i or a 0) gets translated to an electrical signal which

appears on the I/O port pin of the 6510. The connected output device

must be designed such that it understands a voltage signal of +5 volts

to mean the value i and a voltage signal of 0 volts to mean the value

0. For data to be sent as desired* location 0 must have a 0 in the

bit position of the data to be transferred from location i to the

output device.

Location 0 is called the data direction register for the 6510's

I/O port. Location i is called the I/O port. These registers do not

exist on the 6502 and are what distinguish the two microprocessors.

The Commodore 64 has a dedicated usage of the I/O port which

will be examined in later chapters.
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Processing

The instructions within the program which control the processor

cause it to either: 1) load data from memory into one of its internal

registers or 2) to move data from one register to another or 3) to

store data from one of the registers into memory or 4) to modify the

data in one of the registers by some arithmetic operation or 5) to

cause a change in the flow of the program.

The 6510t as it decodes each instruction after having fetched

it from memory* discovers three things about the instruction: i) the

number of bytes the instruction takes in memory; 2) the addressing

mode of the instruction; 3) the operation to be performed. The

operation code takes only one byte for every instruction but some

instructions need to supply the processor additional information

beyond the op-code. This is either address information or data. If,

for example, an instruction's purpose is to direct the processor to

store the data contained in its A register into some location in

memory, it needs to provide the 6510 the information as to where to

store it. This could take one or two additional bytes depending on

the addressing mode.

Each operation code has coded into it the information as to

what addressing mode should be used to accomplish the desired

operation. The 6510 has thirteen addressing modes.

ABSOLUTE NODE - Absolute adressing requires a three byte instruction.

The *irsx is the op-iode and the next two are the two bytes of address

information.

You recall that it takes two bytes i sixteen bits ) to

specify an address in the 6510 address space. This is because the

address bus is sixteen bits wide. The first byte of the two byte

address is called the high-order byte or the most-significant byte of

the address. The second byte is the low-order or least significant

byte. These are sometimes abbreviated the MSB and the LSB. The 6510,

when it executes instructions with absolute addressing, simply fetches

the next two bytes after the op-code and puts them on the address bus

when it does the memory access operation specified by the op-code.

The memory devices, which are attached to the address bus and the data
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bus and the control bus* are signaled by the R/W signal and read the

address information off the address bus to select the memory location

to either store data into or read data out of. If the R/W signal

signifies Write, it will take the data from the data bus and store it

into the memory location specified by the address on the address bus.

If it is a Read signal, it will take the data already stored at the

specified location and load it onto the data bus where the 6510 will

find it and do whatever the op-code indicated should be done with it.

In absolute mode, the address is stored after the op-code with the

least significant byte immediately following the op-code and the most

significant byte following that. Example:

LDA$452i

20C0 AD 2 i 45

This is an example of both an assembly language statement on the

first line and the machine language following it. The format is the

same as that which appears on the screen when you run The Assembler.

The assembly language mnemonic is LDA. It is the assembly language

equivalent of the op-code. It means Load the A register. The

Assembler, which converts assembly language into machine language,

decodes the mnemonic and the following operand and produces the

machine language which appears on the second line. The Assembler

also produces a cassette or diskette file containing the machine

language which The Loader can then read and store in the appropriate

memory locations, where finally it can be executed as a program.

For now, lets just look at the two statements as they appear

here. The $4521 is called the operand field. It specifies to the

6510 where the data to be loaded into the A register is to be found.

The 20C0 is the address where the instruction is located. It was

arbitrarily picked for this example. The second field, $AD, is the

hex representation for the op-code. Following the op-code is $21, the

second byte of the address specfied in the assembly statement above.

It is followed by $45, the first byte of the address. This is the

order the 6510 expects to find addresses. The 6510 processes this

instruction when its Program Counter has the value of $20C0. It

fetches the op-code at that address and decodes it and executes it in

the following sequence: i) It determines from the op-code of $AD that

this is an instruction to cause the A register to be loaded from a

location whose address it will find immediately after the op-code. 2)
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It fetches the next byte after the op-code* $21, and puts it on the

least significant b/te of the address bus. 3) It fetches the next

byte* $45, and puts it on the most significant byte of the address

bus. 4) It sets the R/W line to R. 5) It waits for the memory device

to get the specified data and put it on the data bus. 6) It reads

the data from the data bus and puts it in its A register. 6. It

increases the PCHtPCL register pair by 3 so that it now points to the

next op-code.

This is a complete instruction cycle.

ZERO PAGE MODE - If you take the sixteen bit address bus and split it

in half, the first eight bits could be thought of as a "page number"

and the second eight bits could then represent the address (from 0 -

255) within that page. This would mean that there are 256 possible

pages, each with 256 memory locations. Zero Page would then represent

all memory locations from $0000 to $00FF (0 to 255). Page one would

immediately follow, containing the addresses $0100 to $0IFF (256 to

511).

These are two pages which have special significance for the

6510. Page zero addresses may be specified with certain machine

language instructions which are specifically coded as Zero Page

addressing mode. Page one is designated the stack page as explained

in the previous chapter. More about that later. The designers of the

6510 decided it would be good to have an addressing mode which allowed

the 6510 to execute instructions faster and would consume less memory.

The Zero Page addressing mode was part of the solution. The

addressing mode is specified as a part of the op-code. In decoding

the op-code, the 6510, upon determining that the addressing mode is

ZP, then knows that the address to be accessed is in zero page. It

therefore has only to load one more byte of addressing data, the low-

order or least-significant portion of the address. The high-order

half of the address will be forced to $00 by the 6510. Therefore,

Zero Page instructions are only two bytes long; the op-code and the

address within zero page where the data is to be stored or found.

Example:

STA B$7C

20C0 85 7C

The left-arrow is the code to the assembler that this is a Zero
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Page instruction. The address specified by the operand is $007C.

This is a Store the A-reg instruction. Op-code $85 causes the

contents of the A-reg to be stored into the specified zero page memory
location ($007C in this example).

IMMEDIATE MODE - Some instructions may direct the processor to find

the needed data immediately after the op-code rather than having to go

to some specified address to find it. These are two-byte

instructions, one for the op-code, one for the data. They execute

even faster than the zero page instructions because the 6510 needn't

put anything on the address bus or wait for another fetch cycle to

complete before it gets the data it needs. Example:

SBC #25

20C0 E9 19

Note here that the operand field has a "#" preceeding the data

value. This is the code to The Assembler that this is an Immediate

Mode instruction. Note also that no "$" preceeds the value 25. The

Assembler recognizes four data types, decimal, hexadecimal, symbolic

labels and ASCII character. Hex numbers are indicated by a leading

"$", ASCII characters by a " '" decimal numbers by a first character

of 0-9, and symbolic labels everything else. In every case, The

Assembler will convert the specified data value into binary (or hex if

you wish, the shorthand notation for binary) which is all the 6510 can

ultimately understand. The second line displays the machine language

in the same format as before. The first field is the address in hex

where the instruction will reside, followed by the op-code in hex,

followed by the data value in hex also. Check for yourself that $19

is the same thing as decimal 25.

The Assembler has an option you may select each time it is run

to print the addresses and generated machine language in either

decimal or hex. The file which is created for loading by The Loader

will always contain hexadecimal.

SBC stands for Subtract with Carry. It is an instruction to

Subtract the specified data value from the contents of the A-reg and

to store the result back in the A-reg.

One further note: Most instructions may be specified with a

variety of addressing modes. The Assembler examines the operand field
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to determine which addressing mode is being specified. It then

generates the proper machine language op-code to indicate both the

operation to be performed and the addressing mode. As an example,

"SBC $4FF3" is an absolute mode version of the SBC instruction and the

op-code for it is $BD as compared with $B9 as in the above example.

Appendix A contains a list of all instructions and their allowable

addressing modes.

IMPLIED MODS - The implied mode of addressing is the fastest executing

and the shortest instruction length. In implied mode, only the

internal registers of the 6510 are addressed. Beyond the op-code, no

more information is required* so implied mode only takes one byte.

Examples*.

TAX

023F AA

TYA

0240 98

TAX causes the contents of the A-reg to be transferred to the

X-reg. TYA causes the contents of the Y-reg to be transferred to the

A-reg.

A-RBG MODE - The A-reg is sometimes called the Accumulator. This is a

carry over from more primitive times. In any event, Commodore and MOS

Technology choose to refer to the A-reg Mode as the Accumulator Mode.

Call it what you like* it is really an implied mode. In A-reg Mode,

only the A-reg and the Carry* Negative and Zero bits of the Status

register are affected. The A-reg mode instructions are valid only for

the "shift" instructions* ASL* ROL* LSR and ROR. For more information

on shift instructions* see the next chapter. Examples:

ROR A

021A 6A

ASLA

021B 0A

RELATIVE MODS - There are three classes of instructions which cause

the flow of the program to change. The JMP and JSR instructions are

explained in the following chapter. All three types of instructions
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accomplish program flow changes in the same general way. They cause

the Program Counter register to be modified. The PC is the register

pair which points to where the next instruction is to be found in

memory. It is automatically incremented by the instruction length

each time an instruction is executed. The instructions which modify

the PC cause the program to "take a branch". That is, the next

instruction to be executed will not be the one immediately following.

It will be found at an address which is determined by the addressing

data supplied by the branching instruction.

The adddressing information supplied by the "relative mode"

instructions is a single byte of data which follows the op-code and

which is added to the value of the PC to determine the new PC value.

The branch is to an address which is the specified number of bytes

away from the branch instruction itself. The address information is

called the relative displacement.

These instructions only modify the PC sometimes. They are

called conditional branch instructions. They test the status of a bit

in the Processor Status Register and the 6510 decides at the time the

instruction is executed whether to Branch ( modify the PC ) or not*

based upon the value of the bit being tested. Example:

CMP #'A 8388 C? 41

BNE NOTA 8382 D8 83

JMP PROCESSA 0305 4C ?D 04

NOTA CMP #'B 0308 C9 42

BEQ PROCESSB 038A F8 CC

This is a short program segment which first compares the

contents of the A-reg with the character "A". The format of the

program listing is the same as that which is produced by The Assembler

when printer output is employed. Note the Immediate symbol* "#" and

the "character" symbol" '". The function of the compare instruction

is to set the Zero bit in the status register if the compare proves to

be a match. Otherwise the Zero bit is cleared.

The instruction after the compare is the conditional branch

instruction. It is a Branch Not Equal instruction. If the result of

the compare results in the zero flag being sett the branch will not

happen and the JMP instruction following the BNE will be executed next

as usual. If not» the next instruction to be executed will be the
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instruction at $0308.

Here you see one of the great advantages of having an

assembler which allows you to use labels to identify program

locations. You* the programmer can use meaningful symbols to refer to

some address in memory. You write the assembly language program

without regard to the actual addresses of each instruction in the

program. If you want to cause the program to branch to some

instruction somewhere in the program, you put a label in English on

the instruction and The Assembler automatically computes the address

of the instruction for you. In this case the symbolic label is

"NOTA".

Assemblers which permit this capability are called symbolic

assemblers. Single-line assemblers such as is incorporated in 64MON

are severely limited by their lacK of this feature.

The generated machine language is particularly interesting

here. The byte following the BNE op-code is a "$93". Relative

addresssing means that the value found in the byte after the op-code

is the number to be added to the PC to find the address to be Branched

to. That is, if the 6510 finds that the status bit being tested by

the Branch instruction indicates a Branch should be taken, it then

adds the value found in the byte after the op-code to the PC. (It has

already incremented the PC by two before testing the status bit). The

Assembler automatically computes the difference between the address of

the instruction following the BNE instruction and the beginning of the

instruction NOTA. In this case the amount of adjustment is three

bytes. NOTA occurs three bytes past the address of the JMP

instruction. It is possible to specify a conditional branch forward

by as much as 127 bytes or backwards as .much as 128 bytes. When

backward branches are specified, the displacement value in the byte

after the op-code must contain a negative number.

We mentioned earlier that a single byte may represent the

decimal range of 0-255. For special situations such as the relative

branch instructions it is convectenient to allow the 256 possible values

of the eight bits to represent a range of numbers from -128 to +127.

To accomodate this need, a system was devised to indicate negative

numbers. It is called the two's complement system. It seems a little

strange at first, but with a little practice it, too, can be mastered.

Negative one is represented as $FF. Negative two is

represented as $FE (or 254 in regular decimal). You can convert a

number to its negative by subtracting it from 256 then converting the
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result to hex. Fop example, the hex representation of-6 is 256-

6=250=$FA. This system is popular with computer designers because it

makes arithmetic easy. Note that 256 in hex is $0100. Subtracting

six from $0100 gives $FA. But $0100 takes two bytes. The maximum

value of one byte is $FF. If we add one to $FF we get $00 with a

carry of one. And with $FF representing -1 it is y/ery nice that when

we add 1 to -1 we get 0. Likewise when we add 1 to minus 2 ($FS) we

get $FF (-i). Another advantage of this system is that all the

negative numbers have the high-order bit on (leftmost bit value = i).

The positive numbers are $00 (0000 0000) to $7F (0111 ilil) and the

negative numbers are $80 (1000 0000) to $FF (1111 1111). It is not

coincidental that the N-flag (Negative bit of the Status Register) is

set every time any arithmetic operation results in a value with the

high-order bit on.

The Assembler will automatically convert relative branch

displacements to the proper value for both forward and backward

branches. And The Assembler will also allow the expression of

negative numbers in the more familiar format of decimal numbers ( -34,

-122, etc. ) and do the conversion to the two's complement value for

you. In debugging, however, it sometimes comes in handy to be able to

do the conversion yourself and is worth knowing how to do.

INDEXED NODES - The X register and the Y register are sometimes called

the index registers. This is because they are used as indexes to

data. That is, the relative position of data in a string may be

addressed by specifying a base or starting address of the string plus

some position index to indicate which data element in the string is

being addressed. The X and Y registers can be used with certain

instructions to be the position index. The instruction specifies a

base address and an index register. The 6510 adds the value of the

index register to the base address to get the effective address of the

data to be accessed. This is a very useful capability. The following

program segment illustrates the use of indexed addressing to move a

string of data from one place in memory to another:
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STRIN61

STRING2

LOOP

EQU

EQU

EQU

LDX

LDA

STA

DEX

BPL

$8488

$8488

$2888

#18

STRING1,X

STRING2,X

LOOP

8488

8488

2888

2888

2882

2885

2888

2889

A2

BD

9D

CA

18

8A

88

88

F7

84

84

Several new things are presented in this program segment. The

first two statements cause The Assembler to equate a symbolic label

with a specific address in memory. For every subsequent reference to

the label being EQUated (STRING1 in this example) The Assembler will

Know that the address being referred to is the one in the operand

field of the EQU statement ($0408). Note the generated machine

language which follows the statement; LOOP LDA STRING1,X. The

address $0400 is automatically generated by The Assembler (in the

required low-order-byte-first format).

The third EQUate tells The Assembler what value to assign to the

Location Counter. The Location Counter is The Assembler's equivalent

of the 65iO's Program Counter. The difference is that the Program

Counter is an actual hardware register contained on the 6510 chip.

The Location Counter is The Assembler's symbolic equivalent of the PC.

The address printed on the machine language line after each assembly

instruction is the value of the Location Counter for each instruction.

It shows us where the generated machine language will be in memory

when The Loader finally loads the program into memory. Every EQUate

statement sets the Location Counter to the address expressed in the

operand field of the statement.

The LDX instruction loads the X-reg with the value 10. The

next two instructions illustrate the indexed addressing mode. The

first instruction loads the A-reg with a byte of data found at address

$400A. The address specified in the LDA instruction is $0400. The

contents of the X-reg are added to the specified address by the 6510

before putting the address on the address bus. Since the X-reg has

Just been loaded with the value 10, the address where the data will

come from to be loaded into the A-reg is $0400 + $000A or $040A.

The next instruction turns right around and stores that same

data back in memory at the address $048A. So we now have three copies
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of the same byte of data. One copy in $040A, one in $048A and one in

the A-reg. The next instruction, DEXf causes the X-reg to be

DBcreased or decremented by 1. Since it had the value of 10 coming

into this instruction, after the instruction is executed, it will have

the value of 9. The next instruction, BPL LOOP, will conditionally

branch to the instruction which has the label LOOP. Note this is a

backward branch of 9 bytes. The generated machine language value of

how far to branch is $F7. Remember about negative branch

displacements? 256 - 9 = 247. 247 / 16 - 15 with a remainder of 7.

Hence the hex value of -9 = $F7. Conveniently, The Assembler made

that calculation for us.

The BPL instruction tests the Negative bit of the Status

Register. BPL stands for Branch if PLus. The Negative bit is

affected by every execution of a DEX instruction (and many other

instructions as well). If the X-reg was zero before the execution of

the DEX, the result of the DEX would be a negative number in the X-

reg. The Negative bit would be set to one. The BPL tests the

negative bit. If it is not a one (not negative) the X-reg must still

be positive or zero after having been decremented by the DEX.

The branch will be taken back up to LOOP. The A-reg will now

be loaded from address $0409 and stored into address $0489. The X-reg

will be decremented again and tested to see if it went negative yet.

Once again, it is positive (it has the value 8 now). The branch will

be taken back up to LOOP, the same process will occur once again, this

time moving a byte from $0408 to $0488. Once again, the X-reg will be

decremented and tested and found not-negative. The loop will be

executed a total of 11 times, with the X-reg varying from iO to 0, the

address of data being loaded into the A-reg varying from $040A to

$0400, the address of where data is moved to varying from $048A to

$0480.

This is the process by which a wide variety of repetitive

operations are performed upon data with the 6510. This is a very

standard loop. If it still seems mysterious to you read it over again

and when we get to the section on actually using The Assembler /

Editor, The Loader, The Monitor, and The Decoder, we will create an

actual program which does just this process. We will execute the

program one step at a time with The Monitor, watching how everything

works and seeing the registers and the memory locations changing as we

go through the program.
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There are four modes of addressing which are called indexed.

Both the X-reg and the Y-reg may be used in indexed instructions and

both may be used in combination with absoulte and Zero Page modes.

Like the absolute and ZP addressing modes, the absolute,X and ZP,X

instructions take three and two bytes respectively. The Y-reg and the

X-reg -function identically in their respective modes. The four

indexed modes then are: abs»X ; ZP»X ; abs»Y ; ZP»Y .

INDIRECT MODE - There is only one instruction which uses the simple

indirect mode of addressing. This is the JMP (addr) instruction. The

parenthesis around the absolute address signifies indirect. What

happens with the indirect jump is the following: 1) The 6518 gets an

address from the two bytes immediately following the op-code. Rather

than load the PC with this value directly* it fetches an address from

the specified memory location and the memory location immediately

following it. This is the address which it loads into the PC. Thus a

change in the program flow is caused.

To state this another way, for the JMP indirect to work as

desired, there must be an address pre-stored somewhere in memory. The

JMP instruction must tell the 6510 where that address is located in

memory. The 6510 will then load its PC with the address stored

therein. Such a prestored address is called a vector. BASIC has

several vectors saved in the first few pages of memory which point to

various processing programs.

Vectors are convenient ways of allowing the flexible design

of operating systems such that new versions and updates to the

operating system can be compatible with the old versions. Programs

which need to use the various routines pointed to by vectors will not

need to be changed because of a different location of the routine in

the new version. The vector will be the only thing which will have to

be modified to allow compatibility.

(INDIRECTLY - This mode is somewhat similar tc/the indirect mode
discussed above. The above instruction was applicable only to the JMP

instruction. This mode is applicable to various data access and

manipulation instructions. These instructions are two byte

instructions. The second byte of the instruction specifies an address

in zero page. Like with the previous mode, there must be an address

stored at the specified location. The big difference here is that the

Y-reg is added to the address found in zero page to give the 6510 the
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eventual address of where the data should come from or go to.

The (Indir),Y mode is actually used exactly like the addr,Y mode. It

is useful for doing loops. The only difference is that the base

address of the loop is stored in Zero Page rather than specified

directly by the instruction. The instruction then specifies the Zero

Page location of the base address. This is a very handy way to

program a subroutine which is used at different times and called from

different places in the mainline program to do the same general task

but with differing sets of data. The base address of the data to be

manipulated by the subroutine must be appropriately set up in Zero

Page each time just before the subroutine is called. The subroutine

itself never has to change anything. It uses the zero page vector to

get the data it's been called to use. Example:

SUBRA LDY B$40

LOOPA LDA <$7C),Y

STA ($80),Y

DEY

BPL LOOPA

RTS

Here, the subroutine, SUBRA, is designed to do a general

purpose move of data from some location in memory to some other

location. The number of bytes to be moved is found in location $0640.

The location of where to move the data from is found in $007C and

$007D. The address of where to move it to is found in locations

$0080 and $0081. The calling program must set those locations up with

the appropriate values for the subroutine to function as desired.

Note that no left arrow is required for the (indexed),Y mode even

though the specified address is always in Zero Page.

(INDIRECT,X) -This is the last and probably the least useful

addressing mode provided with the 6510. You may have guessed that it

is similar to the previous mode. It would be a lot more useful if it

were identical except for the register used. Unfortunately, it isn't.

You should notice that the X is inside the parenthesis, whereas in the

previous mode, the Y is outside the parenthesis. This is reflective

of the important distinction. The parenthesis indicate the

"indirection". In the previous example, the Y-reg was added to the

address found in Zero Page, and the result of that addition provided
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the address of the desired data. Here, the X-reg is added to the

specified address !to find where in Zero Page the vector resides. The

X-reg is therefore an index to a table of vectors stored in Zero Page.

This mode is not useful* therefore, in the same way that the other one

is. It might find some use in unusual situations where there is a

need to have a list of addresses of data bytes and a routine is needed

to process the various data bytes. Such a routine would step through

the list* an address (two bytes) at a time* using the X-reg to bump

thru the list and to point to the appropriate address at which the

data will ultimately be found. Perhaps you can find some better use

of this mode.

These last four chapters have been fairly packed with information

on the workings of the 6510. It will be necessary to write some

programs and to examine the programs of others to get a comfortable

feeling about the use of the various instructions and addressing

modes. The next chapter will present every available instruction on

the 6510. After completing it* you will be able to start to take

control of your computer by writing powerful machine language

programs.
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65 10 - Instruction Set

There are 56 separate instructions which the 6510 has been

designed to execute. There are also two "pseudo-op instructions"

which are not a part of the 6510's instruction set but which The

Assembler understands.

There are 13 addressing modes. Some instructions are limited

to a single addressing mode, others are capable of utilizing up to

eight. Most of the instructions are quite simple functionally* and

require only a sentence or two to describe their characteristics. We

will cover these first.

Register-only instructions

TAX -Transfer the contents of the A-reg to the X-reg. Only the

receiving register is modified. The Zero bit of the Status Register

is set (made to have the value 1) if the value transferred is zero,

otherwise it is cleared (made to have the value 6). The Negative bit

of the Processor Status Register is set if the high-order bit of the

value transferred is on (value i)f else it is cleared.

TAY - Transfer A-reg to Y-reg. The A-reg is stored into the Y-reg.

The same notes apply as with TAX.

TYA - Transfer Y-reg to A-reg. The Y-reg is stored into the A-reg,

The same notes apply as with TAX.

TXA - Transfer X-reg to A-reg. The X-reg is stored into the A-reg.

The same notes apply as with TAX.

TXS - Transfer X-reg to Stack Pointer. The X-reg is stored into the

Stack Pointer. No status bits are affected. This is the only way of

initializing the Stack Pointer.

TSX - Transfer Stack Pointer to X-reg. The Stack Pointer is stored

into the X-reg. The same notes apply as with TAX.

SEC - SEt the Carry bit. The Carry bit is set to value 1.
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CLC - CLear the Carry bit. The Carry bit is cleared.

SED - SEt the Decimal Mode bit. The Decimal Mode bit is set to value

1. The Decimal mode of arithmetic is enabled.

CLD - CLear the Decimal Mode bit. The Decimal mode of operation is

disabled. The Decimal Mode bit is cleared.

CLV - CLear the overflow bit. The overflow bit in the Processor

Status Register is cleared.

CLI - CLear the Interrupt disable bit. The Interrupt disable bit in

the Processor Status Register is cleared, allowing interrupts to

occur.

SEI - SEt the Interrupt Disable bit. The Interrupt disable bit in the

Processor Status register is set to i» causing all interrupts to be

masked (disabled) until the Interrupt disable bit is cleared with a

CLI.

DEX - DEcrement the X-reg. The value contained in the X-reg is

decreased by i. If the resulting value in the X-reg is zero* the Zero

bit is set in the P. If it is not zero* the zero bit is cleared. If

the resulting value in the X-reg has the high-order bit on, the

Negative bit in the Processor Status Register is set. Otherwise the

Negative bit will be cleared. Note that register values of 0-127 will

have a clear high-order bit and values of 128-255 will have the bit

set.

DEY - DEcrement the Y-reg. The value of the Y-reg is decreased by 1.

The Zero and Negative bits are affected as with the DEX instruction.

INX - INcrement the X-reg. The value of the X-reg is increased by i.

The Zero and Negative bits are affected as with the DEX instruction.

INY - INcrement the Y-reg. The value of the Y-reg is increased by 1.

The Zero and Negative bits are affected as with the DEX instruction.
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Memory accessing instructions

INC -INCrement memory. The value of a byte located in memory is

increased by i. The Zero and Negative bits are affected as with the

DEX instruction. Only ZP; ZP>X; ABS; ABS»X modes are valid.

DEC - DECrement memory. The value of a byte located in memory is

decreased by i. The same comments as apply for INC.

LDA - LoaD the A-reg. The contents of a memory location are

transferred to the A-reg. The Zero and Negative bits are affected as

with the TAX instruction. Valid addressing modes are: Immediate; ZP;

ZP,X; Absolute; Absolute,X; Absolute^; <Indirect,X); (Indirect,?)

LDX - LoaD the X-reg. The contents of a memory location are transferred

to the X-reg. The Zero and Negative bits are affected as with the TAX

instruction. Abs, ZP and ZP*Y addressing modes are valid.

LDY - LoaD the Y-reg. The contents of a memory location are

transferred to the Y-reg. The Zero and Negative bits are affected as

with the TAX instruction. Abs> ZP and ZP,X addressing modes are

valid.

STA - STore the A-reg. The contents of the A-reg are transferred to a

memory location. No registers or status bits are affected. Valid

addressing modes are: ZP; ZP»X; Absolute; Absolute,X; Absolute,Y;

(Indirect,X); (Indirect,Y)

STX - STore the X-reg. The contents of the X-reg are transferred to a

memory location. No status bits or registers are affected. Abs, ZP

and ZP,Y addressing modes are valid.

STY - STore the Y-reg. The contents of the Y-reg are transferred to a

memory location. No status bits or registers are affected. Abs, ZP

and ZP*X addressing modes are valid.
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Conditional Branch Instructions

BCC - Branch Carry Clear. The program counter will be modified by the

amount of the specified displacement if and only if the Carry bit is

clear (0). Forward branches may occur up to 128 bytes from the

address of the first byte following the branch instruction. Backward

branches may occur up to 127 bytes from the same address. No other

registers other than the PC are affected. Only Relative addressing

mode is valid.

BCS - Branch Carry Set. The program counter will be modified by the

amount of the specified displacement if and only if the Carry bit is

set (1). Same comments as for the BCC instruction.

BBQ - Branch EQual. The program counter will be modified by the

amount of the specified displacement if and only if the Zero bit is

set (i). Same comments as for the BCC instruction.

BNE - Branch Not Equal. The program counter will be modified by the

amount of the specified displacement if and only if the Zero bit is

clear (0). Same comments as for the BCC instruction.

BNI - Branch Minus. The program counter will be modified by the

amount of the specified displacement if and only if the Minus bit is

set (i). Same comments as for the BCC instruction.

BPL - Branch PLus. The program counter will be modified by the amount

of the specified displacement if and only if the Minus bit is clear

(0). Same comments as for the BCC instruction.

BVC - Branch overflow Clear. The program counter will be modified by

the amount of the specified displacement if and only if the Overflow

bit is clear (0). Same comments as for the BCC instruction.

BVS - Branch overflow Set. The program counter will be modified by

the amount of the specified displacement if and only if the Overflow

bit is set (i). Same comments as for the BCC instruction.
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Jump instructions

JMP - JuMP. The PC is loaded with the specified addresst causing a

change in the flow of the program. Both Absolute and Indirect

addressing modes are valid.

JSR - Jump to SubRoutine. The PC is first incremented by 2. The new

PC is then stored on the stack. The PCH is stored in the stack

location addressed by the Stack Pointer. The Stack Pointer is

decremented and the PCL is then stored in the new stack location as

addressed by the SP. The SP is decremented a second time and the

address specified by the JSR instruction is loaded into the PC*

causing a jump to the specified subroutine location. Note that the

address stored on the stack is not what might be expected. The

address is of the third byte of the JSR instruction* not the address

of the next sequential instruction after the JSR. The RTS

instruction* which causes a return from the subroutine* compensates

for this anomaly. Generally* the casual programmer needn't worry

about the mechanics of stack operations as long as she always has a

RTS for every JSR. However* advanced machine language programmers are

fond of direct stack manipulation techniques* especially for passing

arguments to subroutines.

RTS - ReTurn from Subroutine. The Stack Pointer is first incremented.

The PCL is loaded from the stack address pointed to by the Stack

Pointer. The SP is then incremented again and the PCH is loaded from

the stack. The PC is incremented to compensate for the JSR operation

of putting the address of the third byte of the JSR on the stack

instead of the address of the next instruction. Now the PC has the

address of the instruction immediately following the most recent JSR

instruction. The program flow is thus returned to the mainline

program from the subroutine.

RTI - ReTurn from Interrupt. This instruction reverses the process

which occurs when an interrupt occurs. The Processor Status Register

is retrieved from the stack where the interrupt caused it to be

stored. The PCH and PCL are then reloaded from the stack where they

too were stored as a part of the 65ie's interrupt processing. The

return to the point of interruption is thus complete* with the
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Processor Status Register having the same value it had at the time o-f

interruption.

BRK - BReaK. Interrupt processing is caused to occur. The address of

the next byte following the BRK instruction is saved on the stack.

The Break bit is turned on in the Processor Status Register which is

then saved on the stack. The PC is loaded with the address found at

memory location $FFFE and $FFFF.

Stack Push & Pull Instructions

PHA - PusH the A-reg. The A-reg is stored on the stack at the address

pointed to by the SP. The SP is then decremented. All PHA's should

generally be matched with a following PLA.

PLA - PuLl the A-reg. The SP is incremented* then the A-reg is loaded

from the stack location pointed to by the new value of the SP.

PHP - PusH the P-reg. The Processor Status register is pushed onto

the stack in the same fashion the A-reg is with the PHA.

PLP - PuLl the P-reg. The Processor Status register is pulled off

the stack in the same fashion the A-reg is with the PLA instruction.

Pseudo-op Instructions

BYT This is not really an instruction in the instruction set of the

6516. It is an instruction which The Assembler recognizes and

interprets to mean, generate machine language data. The operand field

of the BYT instruction can express several types of data which The

Assembler will understand.

If the first character of the BYT is a " $ ", the following

characters must be hex characters* i.e. 0-9, A-F. The Assembler will

handle a string of hex characters up to 75 characters in length. It

will generate a data string with two nybbles (a half byte - 4 bits)

per byte* inserting a $0 in the high-order nybble of the high-order

byte if there are an odd number of characters specified.
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The Assembler will create a

data string with as many bytes as there are characters following the "

' ". The values of the generated bytes will be the ASCII values of

the corresponding characters.

If the first character of the operand is a ">" or ll<" the

remainder of the operand field will be interpreted as an address

expression and the generated byte will be either the high-order byte

of the address or the low-order byte depending on whether the first

character is s ">" or a "<". Any other first character will cause the

operand field to be interpreted as an address expression and the

assembler will compute a two-byte address in the low-order-byte-first

format. Address expressions are covered fully in the chapter on

writing assembly language programs.

EQU - EQUate. This pseudo-op does not generate any data which gets

stored into memory by The Loader. It is an instruction to The

Assembler to set the Location Counter and to cause the label in the

label field to be assigned to the address which is expressed in the

operand field.

Shift Instructions

ASL - Arithmetic Shift Left. The contents of the A-reg or of a memory

location are shifted one bit position to the left. The low-order bit

position is forced to value 2ero. The high-order bit is shifted into

the Carry bit. The Negative bit is set if the bit shifted into the

high-order bit position is a 1. It is cleared if it is a zero. The

Zero bit is set if the resulting value of the shifted byte is zero,

cleared if it is not.

As an example* if the A-reg has the value $CC ( 1100 1100 )»

after the "ASL A11 instruction has been executed, it will have the

value $98 ( 1001 1000 ) and the carry bit will be set. If the A-reg

has the value of $5F ( 0101 1111 ) the "ASL A" will cause it to become

*BE ( 1011 1110 ) and the carry bit will be clear. Note that each left

shift causes the A-reg to double in value as long as the high order

bit is not a one before the shift. Shifting left is a convenient way

of multiplying a value by two. Using ASL in combination with ROL, a

multiple precision shift may be effected. See the description of the
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ROL instruction. Valid addressing modes are: Accumulator; ZP ; ZP,X ;

ABS; ABSfX.

ROL - ROtate Left. The A-reg or a byte in memory may be shifted one

bit to the left. The high-order bit gets shifted into the Carry bit.

The low-order bit recieves the previous contents of the Carry bit.

The same addressing modes apply as for the ASL instruction.

A multiple precision bit shift is one where a string of bytes

is treated like one long bit pattern and the shift causes the bits

which come out of the high-order positions of one byte get shifted

into the low-order positon of the next byte in the sequence. For

example:

BITSH

ROLIT

LDY

LDX

ASL

DEX

ROL

DEX

BPL

DEY

BPL

#3

#4

STR,X

STR,X

ROLIT

BITSH

SHIFT 4 BITS

THRU 5 BYTES

RIGHT-MOST BYTE

ALL BYTES ?

ALL BITS ?

This routine would cause the string of five bytes at STR to be

left shifted four bits. Each execution of the ROL shifts the contents

of the Carry bit into the low order bit of the byte being shifted.

The Carry bit will contain the bit which was shifted out of the high-

order bit position of the previous byte. The ASL is used as the first

shift instruction to force zero bits into the low order positions of

the low-order bytes.

LSR - Logical Shift Right. The contents of the A-reg or memory

location specified is shifted one bit position to the right. The low-

order bit gets shifted into the Carry bit. The high^order bit

position is forced to zero. The Zero bit is set based upon the

resulting value of the shifted byte. The Negative bit is forced to

zero. The same addressing modes apply as for the ASL instruction.

ROR - ROtate Right. All bits in the rotated byte are shifted one bit
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position to the right. The Carry bit is shifted into the high-order

bit position and the low-order bit position is shifted into the Carry

bit. The same addressing modes apply as for the ASL instruction. The

LSR and ROR instructions are the same as the ASL and ROL instructions

except they shift bits in the opposite directions. Note that a one-

bit shift right results in an effective division by two.

Boolean arithmetic instructions

AND - Logical AND. The A-reg is logical ANDed with the specified data

byte. The boolean AND operation is performed between corresponding

bits of the two bytes. Each bit position of the pair of bytes is

ooerated on individually) the result of the operation replacing the

corresponding bit in the A-reg. The rules of the AND operation are:

if the two bits being ANDed are value 1» the result is a 1; if either

bit is a 0 the result is a G. That is, CO AND ID = e ; CO AND GD = e

; Ci AND 13 = i ; Cl AND 93 = 0. Example:

11801010 Memory

AND 10101100 A-reg

10001000 new A-reg

Only the bit positions which had aim both bytes ended up

with a 1 in the result. The AND instruction is frequently used to

selectively clear individual bits while maintaining the status of the

other bits in the byte. This is done by creating a "mask-byte" which

has a 0 in every bit position which needs to be cleared (set to 0)>

and a i in all the other bit positions. The mask byte may be in

either the A-reg or the specified memory location but the result of

the operation always replaces the A-reg.

This process works because a 0 ANDed with either a 0 or a 1

gives a 0 result while a 1 ANDed with a 0 gives a 0 and ANDed with a i

gives a 1.

ORA .- Logical OR. The A-reg and the specified memory location, are

logical ORed together, the result replacing the A-reg. The boolean OR

operation, iike the AND operation, is a bit by bit operation. Each bit
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of the A-reg is ORed with the corresponding bit of the byte in memory

by the following rules: If either bit is a it the result is a 1. If

both bits are 0, the result is e. That is, Ci OR 13 = 1 ; Ci OR 83 =

1 ; C8 OR 13 = i ; 8 OR 8 = 8. Example:

11801018 Memory

ORA 101011O0 A-reg

11101110 A-reg

The ORA is frequently used to selectively turn bits on (set to

i). Like with the AND, a mask must be created which indicates the

desired bits to set and the bits to be unaffected. The OR mask must

have a bit on in the bit positions to be set and off in the positions

which need to be maintained. This is opposite of the AND mask.

There, 1-bits maintained the status quo. Here, 8-bits have that

responsibility. A 8 in the mask byte when ORed with a 1 gives a 1 and

when ORed with a 8 give a 0. And a 1 in the mask byte always results

in a i result. Ci OR 13 = i; Ci or 83 = i. Valid addressing modes are

the same as for the AND instruction.

EOR - Exclusive OR. The contents of the specified memory byte are

EORed with the contents of the A-reg, replacing the A-reg with the

result. Like the AND and OR instructions, this is a bit oriented

instruction. The rules of Exdusive-Oring are: The result will have

a i in any bit position for which only one of the two bytes being

EORed have a one. All other bit positions of the result will have a

6. (i.e. Ci EOR 83 = i; ti EOR 13 = 8; C8 EOR 83 = 8; C8 EOR 13 = 1).

Example:

11081010 Memory

EOR 10101100 A-reg

01100110 New A-reg

The EOR instruction is useful for inverting bits. A i in any

mask bit position will cause the corresponding bit in the result to
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have the opposite value as that of the corresponding bit in the object

byte. A i before EORing will result in a 0 after and vice versa. A

zero in the mask byte will cause the corresponding bit in the object

byte to go unmolested.

BIT - BIT test. The A-reg is logically ANDed with the contents of the

specified memory location. The Zero flag is set if the result of the

operation gives a zero result. The Negative bit is set if the high

order bit of the memory location is set. The Overflow bit is set if

the second-highest-order bit (the 6-bit) of the memory location is

set. The Negative and Overflow bits are cleared if the 7-bit and 6-bit

of the memory location are clear. The A-reg is not affected by the

execution of this instruction.

This instruction is very useful for testing individual bits of

bytes in memory. The A-reg is loaded with a mask which has ones in

the bit positions to be tested and zeros in the rest. If any of the

memory byte's bits in the tested positions are on the result of the

ANDing operation will be non-zero. Note that the mask may be either

in memory or in the A-reg for the test to work. The Negative and

Overflow bits are set based only upon the bit configuration of the

memory byte however. Example:

MASK BYT $86

LDA MASK

BIT VALI

BMI BIT?

BVS BIT*

BNE BIT10R2

OK EQU 3

The value of the byte assigned to label MASK is $06. The i-

bit and the 2-bit are on and all others are off. The BIT instruction

ANDs the contents of the A-reg, *Mf with the byte at VALi and the

result will be non-zero only if either the i-bit or the 2-bit of VALi

is a one. If VALi has its high-order bit on, the program will branch

to BIT7. If the 6-bit is on in VALi the program will branch to BIT6.

If either bit-2 or bit-i are on, the branch to BIT1OR2 will be taken.

The " Q" is used in the last statement of the program. It

has a special significance to The

Assembler. Used in the operand field of an instruction it is like a
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symbolic label except it references the current value of the Location

Counter. Heret it performs the function of assigning the value of the

Location Counter to the label "OK".

Arithmetic instructions

ADC -ADd with Carry. Addition is performed with the A-reg, the

specified memory location and the Carry bit. ( A-reg ) = ( A-reg ) + (

addr ) + ( carry ). The <...) is used here to mean "the contents

of". The result replaces the A-reg. The mode of arithmetic is

determined by the status of the Decimal mode bit at the time the

instruction is executed. If set, the mode of addition is the Decimal

mode. If dear, the mode is binary. Valid addressing modes are the

same as for the LDA instruction.

Binary addition is quite simple. It is Just like decimal

addition except the highest number you have to worry about is 1. The

rules of addition are:

8 + 1 = 1

1 + 1 = 18 <2 in decimal)

The third example is the only one which is different from

decimal addition. When we add a pair of binary numbers with more than

one bit apiece, we proceed from right to left Just like decimal

addition. We add the two bits together and if the result is greater

than 1 we have to carry 1. So, 11 + 11 = 110. Doing this addition

one step at a time, taking the rightmost bits, 1 and 1, and adding

them by the above rules, we see that the answer is 10, or 0 with a

carry of 1. Next we add the next pair of bits plus the carry. 1 + 1

+ 1 = (1 + 1) + 1 = 10 + 1 = 11. Thats a 1 with a carry of 1. Note

that 1+1 + 1 = 3 in decimal and 1 + 1 + 1 = 11 in binary which is

the binary equivalent of 3 decimal. The most you have to remember in

binary addition of two numbers is 0 + 0 = 0; 0 + 1 = 1; 1 + 1=10

(0 carry 1); 1 + 1 + 1 = 11 (1 carry 1). The ADC instruction does

this binary addition work for you* so you might not need to know it.

On the other hand* you probably will when you go to debug your

Galactic Gobbler Game. So you might just as well learn it now.
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When in Decimal mode, the 6510 expects the data it is adding

to be in "binary coded decimal" format. This is yet another data

format. In BCD, the eight bits of a byte are interpreted to be two

four bit decimal digits. Each four bit digit may have the hexadecimal

values of 0-9. If there is some other bit configuration in the range

of A-F in either half of the bytes being added* the results will be

unmeaningful. When the ADC is executed in Decimal mode, the two low-

order digits are added and any decimal carry is added together with

the two high-order digits. The carry bit will be set if there is a

decimal carry from the addition of the high-order digits.

It is standard procedure to clear the carry bit before using

the ADC instruction because the Carry bit is added into the result.

This is a nice feature when you are doing multiple precision addition

such as adding two 32 bit numbers together. The carry bit is the

needed communication between the successive bytes of the addition.

Example of 32 bit multiple precision addition:

LDX #3 4 BYTE ADDITION

CLC

NEXT LDA VAL1,X

ADC VAL2,X

STA VAL3,X

DEX

BPL NEXT

SBC - SuBtract with Carry. The specified byte in memory and the

inverse of the Carry bit are subtracted from the A-reg* replacing the

A-reg with the result. That is* (A-reg) = (A-reg) - (addr) - Ci -

(Carry) 3. The Carry bit is set if the contents of the A-reg are

greater than or equal to the value being subtracted from it. The

Carry bit is cleared if the value subtracted is less than the contents

of the A-reg. In deciding whether the contents of the A-reg and the

memory location are greater than or less than one another* the 6510

interprets the values as unsigned integers in the range of 0-255.

The carry bit is like an inverted borrow. If a borrow is

required* the Carry bit is 0. If no borrow is required* the Carry is

1. The Negative and Zero bits are set based on the result of the

subtraction. The Overflow bit is set if "two's complement overflow"

occurred. Valid addressing modes are the same as for the LDA
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instruction.

The normal subtraction procedure is to set the Carry bit before

the SBC is executed. Using the SBC to compare two values requires

testing the Minus bit after the subtraction is complete.

If the desire is to branch to PRGA if the contents of VALi

are less than the contents of VAL2 the following program would be

used:

SEC

LDA VALI

SBC VAL2

BMI PRGA

OK EQU 9

The above routine works for unsigned numbers. If a comparison

is being made of numbers which may have negative values* a more

complex routine must be used. The possibility of "negative overflow11

exists when subtracting numbers which are intended to represent values

in the range of 0 to 127, -1 to -128. If we try to subtract 10 from -

124» the result would be -134. This is out of the range of negative

numbers. The 6510 lets us know that if this was a signed operation,

the result had "negative overflow". This is done by setting the

Overflow bit in the Processor Status Register. The value which ends

up in the A-reg is 122 (256-134) in the above example. The unsigned

equivalent of the -124 is 132 (256-124). And 132 - 10 = 122. This

positive result gives a false indication of the relative magnitude of

the two signed numbers. When working with signed numbers the

following technique is necessary to make accurate comparisons of

magnitude:

CHKMI

OK

SEC

LDA

SBC

BVS

BMI

BPL

BPL

EQU

VALI

VAL2

CHKMI

PRGA

OK

PRGA

3

Positive overflow can occur the same way. Suppose VALi has
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the value of 126 and VAL2 has the value of -4. The intention of the

above program is to branch to PRGA if VALi is less than VAL2. 126 -

(-4) = 130. 130 is out of the range of signed numbers (0-127).

Positive overflow occured. The 6510 tells us this in the same way, by

setting the Overflow bit. Does the program work for this case? 126

is not less than -4. The overflow bit was set by the SBC. The branch

is taken to CHKMI where the Negative bit is tested. It is on because

the value in the A-reg is greater than 127. It is 130. So the branch

is not taken to PRGA. It works!

Compare Instructions.

CMP - CoMPare. The magnitude of the specified memory location is

compared with the magnitude of the A-reg. The Zero and Negative bits

are set as though a SBC had occurred. The A-reg is not modified by

this instruction. The carry bit need not be pre-set or cleared before

executing the instruction. The carry bit is set if the compare finds

that the A-reg is greater than the value of the contents of the memory

location. The Overflow bit is not affected by this instruction. It

is therefore not possible to use the CMP to make magnitude

comparisons of signed numbers. The description of the SBC instruction

illustrates the technique for accomplishing this. Valid addressing

modes are the same as for the LDA instruction.

CPX - ComPare the X-reg. The X-reg is compared to the contents of a

specified memory location. This instruction functions exactly like

the CMP instruction except the register being compared is the X-reg.

The valid addressing modes are Absolute* Zero Page and Immediate.

CPY - ComPare the Y-reg. The Y-reg is compared with the contents of

the specified memory location. This instruction functions exactly

like the CMP and CPX instructions. Addressing modes are the same as

CPX.
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Impotent Instructions

NOP - NO Operation. The amazing NOP instruction does absolutely

nothing. It causes the 6510 to spin its electronic wheels for a few

microseconds. It takes up one byte of memory.
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Specifications -for Assembly Language

General

This chapter gives a compact description of the capabilities

and restrictions of the assembly language of the Develop-64. For a

tutorial walk-through of the operational use of the tools read

Chapters i-4.

The assembly language statement may be a maximum of 79

characters in length. This is exactly two lines on the screen minus

the prompt character ("). There are two kinds of statements:

comments and regular assembly language statements. Comments must

begin with a " ; " in the first position. There are no other

restrictions on comments other than the disallowance of the quote ( "

) character. This restriction applies equally well to all statements.

Labels

The label field, if used, is the first field of the assembly

statement. It is not a required field. If used» it must start with a

letter (A-Z) and may be of any length. The single character "A"

should not be used* as it will be confused with the "A" of the

Accumulator addressing mode when appearing in an operand field. Other

characters which should be avoided are the seven algebraic operators

and the quote ("). Labels of more than seven characters will cause

the assembly listing to be somewhat less neat appearing but work just

fine.

Mnemonics

Standard mnemonics

The mnemonic is the English-like code which gets translated by

Develop-64 into the machine language op-code. A discussion of the

mnemonics is found in chapter 9. See appendix A for a complete list of

all valid mnemonics and their legal addressing modes.
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The EQU pseudo-op

Develop-64 comes equipped with two special mnemonics* SQU and

BYT. These do not generate processor-executable instructions as do

the standard mnemonics. The BYT pseudo-op is covered in the next

paragraph. The EQU mnemonic is an instruction to Develop-64 rather

than an instruction to the machine. It has two functions. The first

is to set the location counter. This is a function sometimes left to

a separate pseudo-op such as ORG in other assemblers. The second

function is to equate a label with an address. The format of the EQU

instruction is:

LABEL EQU addr-expression

The label field is optional. There is one exception to the

general rules for address expressions for the EQU instruction. The

expression may not reference labels which do not precede the EQU

instruction in the segment. This is true only for the EQU instruction

and is the only limitation on it. Any program references to the label

on the EQU instruction will refer to the address expressed in the

operand field.

The address expression must always be present. All the rules

and capabilities of address expression as defined below apply.

EQUate statements are used to allow one to use meaningful

English words instead of numeric values for addresses and other

numbers. The EQU is set up once and all references to the assigned

label will be interpreted by the assembler as the value associated

with the label. The EQU may also be used to reserve a block of memory

and assign it a symbolic label. The following two lines will assign

the label, DATA to the 2ee-byte block of data starting at $CGe0:

DATA EQU *C090

EQU 3+299

The "fl" (at sign) symbolizes the location counter, explained in

more detail later in the chapter.
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The BYT pseudo-op

The BYT instruction, unlike the EQU instruction, does cause

machine language code to be generated by Develop-64. It is not

generally used to generate executable code like the standard

mnemonics. Its function is to provide a means o-f causing data to be

stored in memory. The data generated by the BYT instruction may be

specified in several ways. Depending on the first character of the

operand field, the BYT instruction may specify hexadecimal strings or

ASCII strings or address constants or single byte values of hex,

decimal or ASCII.

Hexadecimal strings

If the first character of the operand field is "$" then a hex

string will be generated. All characters following the "$" should be

hex digits, 0-9 A-F. There may be any number of such digits, up to

the maximum line length constraint. Develop-64 will create one byte

of data for each pair of digits. If there are an odd number of

digits, Develop-64 will append a "0" on the left of the string.

Literal text strings

If the first character of the operand field is a " ' ", all

following characters will be translated to the Commodore ASCII value

of the characters. Each text character in the operand will generate

one byte of data. All the characters which may be entered from the

keyboard with the exception of the quote (" ) are legal. The BYT

literal instruction is the only instruction which cannot have a

comment field. Comments would be interpreted as part of the literal

text. The length of the literal string is limited only by the maximum

line length limitation.

Data constants

A "<" in the first position of the operand field causes the

expression which follows to be evaluated by the rules of address

expression evaluation. The single byte which is generated is the low-

order byte of the resultant two-byte evaluation.
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A ">" in the -first position causes the generation of a single

byte whose value is the high-order (or page number) of the address

expression which follows.

Address constants

If the first character of the operand does not meet any of

the above criteria then the operand is evaluated as an address

expression and the two bytes of data which are generated are in the

6510 address format, with the low-order byte preceding the high-order

byte. It should be noted that a BYT instruction such as:

BYT $3CC

will not generate an address constant in the low-high format.

It is a hexstring and will generate 03 CC. To get an address constant

it would be required to write an instruction such as:

BYT 0+$3CC

which would generate CC 03, as expected.

The following will also generate the same address expression:

MSG EQU *3CC

BYT MSG

The operand field

The operand field follows immediately after the mnemonic field

and specifies to Develop-64 the address of the data to be accessed and

the mode by which it will be addressed. There are actually 13

distinct addressing modes by which the location of data is specified.

The format of the operand field determines which mode will be used and

therefore exactly which op-code will be generated and how many bytes

of address data will be generated. Not all instructions may use the

same set of addressing modes. Appendix A specifies the valid

addressing modes for each instruction or mnemonic.
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Address expressions

One of the features of this assembler is the ability to create

address expressions of great complexity (or simplicity) with ease and

flexibility. The term "address expression" is meant to include the

"immediate" character and BYT data constants as well as actual memory

locations. Address expressions are algebraic combinations of one or

more terms.

Terms

There are five different kinds of terms which may be

algebraically combined in an address expression. Each has its own

distinguishing format. The result of the evaluation of the expression

must not be out of the range of-65536 to 65535 but the individual

terms have no magnitude restrictions. Address expressions which

exceed the magnitude restrictions will cause an ERR 6.

Decimal format

Any term in an address expression which begins with 0-9 or a

"." will be interpreted as a decimal term. Decimal terms may be

integers or may contain a decimal point and a fractional component.

Floating point notation may also be used (e.g. 3E2 will be interpreted

as 360).

Hexadecimal format

Hexadecimal terms are those which have a "$" as the first

character. All following characters, up till the next operator or the

end of the expression, must be 0-9, A-F. Hex terms which have

characters other than these will cause an ERR 5 when the program is

assembled.

Literal format

Any term in an address expression which begins with the

character " '" will be interpreted as a literal. That is, the value
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assigned to that term will be the ASCII value o-f the -first character

to the right of the " '" . Any characters following the first

character following the quote will be ignored.

Symbolic label

Any term which does not start with a "$" or a l"11 or a "9" or

a "." or a number (0-9) will be interpreted as 4 symbolic label.

Develop-64 will search the entire program looking for a match on the

label field. If none is found, ERR 3 will be generated. If a match

is found* the term will be assigned the value of the address

associated with the label. Labels may be of any length.

Location counter

The location counter is Develop-64's equivalent of the program

counter. The location counter is assigned the value of the address

assigned to the first byte of the instruction in which it appears. It

is the address at which the instruction will reside once The Loader

POKES the load segment into memory. This assembler uses the "Q"

symbol to signify the location counter. Most other assemblers use

the "#" symbol for this function. However* the "*" is interpreted by

Develop-64 as a multiplication operator. The11®11 symbol seems a

logical choice* being the "at" sign and signifying where we are "at"

in memory. Any term which has "Q" as its first character will have the

value of the location counter. Any following characters within the

term* should they exist* will be ignored.

Algebraic operators

The various terms of the address expression may be combined

algebraically by the following operators: + - * / A & % . As the

evaluation proceeds from left to right* each term is added to*

subtracted from* multiplied by* etc. the result of the evaluation of

that portion of the expression to the left of the operator* giving a

new current evaluation. The fractional por-t.. / e result of any

operation will be carried into the next operation. The final

evaluation of the expression will truncate any fractional components

and will convert negative numbers into sixteen bit two's complement

values.



Inside The Commodore 64 Page 18-7

AdditionM + "

The addition operator causes the term immediately following

the "+" to be added to the result of the evaluation of the portion of

the expression to the left of the "+".

Subtraction»-"

The subtraction operator causes the term to the right of the

minus sign to be subtracted from the expression to the left of the

minus.

Multiplication" *N

The multiplication operator causes the expression to the left

of the " *" to be multiplied by the term to the right of the M * " .

Division" /"

The division operator causes the expression to the left of

the " / " to be divided by the term to the right of the " / ".

Exponentiationw A n

The exponentiation operator causes the expression to the left

of the " A " to be raised to the power of the term to the right of the

11 A "• Fractional powers may be employed with decimal terms. It is

therefore possible to do such things as take square roots with

expressions such as:

XA.5

Logical ANDn &u

The logical AND operator causes the result of the evaluation

of the expression to the left of the "&" to be logically ANDed with

the term to the right of the "&" . The logical AND operation compares

the two terms of the operation bit by bit, giving a result with a bit

set on in every bit position where both terms have a bit on. Its main

use is to force bits off in certain desired bit positions, while
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retaining the status quo in all other positions.

Logical OR "%"

The logical OR operator causes the result ofthe evaluation of

the expression to the left of the "%" to be logically OR'ed with the

term to the right: of the "%" . The logical OR operation compares the

two terms of the operation bit by bit, giving a result with a bit set

on in every bit position where either term has a bit on. Its main use

is to force a bit on in certain desired bit positions, while retaining

the status quo in all other positions.

Expression evaluation

As has been indicated in previous sections, several terms may

be combined into an algebraic expression, the eventual evaluation of

which will result in the address specification. There are several

features of the evaluation algorithm which must be understood for

proper use of the algebraic capability. First* the order of

evaluation is not like BASIC. Here, the expression is evaluated from

left to rightt regardless of what operators appear in the expression.

For example, the expression:

LA&i+GH%$C/IJ

would be evaluated in the following way: The address of LA would be

AND'ed with the value i. The result would be added to the address of

GH. That result would be OR'ed with *8C. The result of that

operation would be divided by the address of IJ. The final massage of

the expression converts negative expression values to a two's

complement value by the addition of 65536 to the negative value. By

way of example:

-i = $FFFF* -2 = $FFFE, -256 = $FF88, and -257 = $FEFF.

">- The high-order symbol

If the ">" symbol is the first character of the address

expression* the expression will be evaluated as usual but the final
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operation will be to divide the expression's value by 256. This

results in the high-order byte of a two-byte value. This is a

convenient way of expressing the page-number of an address. Example:

SCREEN EQU $8460

LDA #>SCREEN

will cause the value $94 to be loaded into the A-reg.

n<n The low-order symbol

This symbol operates Just like the high-order symbol except the

final operation is to produce only the low-order byte of the address

expression evaluation.

Complex equations

For those who wish to use more complex equations than can be

handled by expressions which are evaluated strictly left to right* it

is possible to accommodate them by a series of EQU's which themselves

are expressions. For example* to represent an equation such as:

<B + C-(D/E))*(F&G)

you could write the following code:

DE EQUD/E

FE EQUF&G

AB EQU B+C-DE*FE

Much more complex expressions may be represented in a similar fashion.

The comment field

Comments are entered on the statement line by skipping at

least one space after the operand field before keying the comment.

Comments are not allowed on BYT instructions which define literal

strings.



Inside Tht Commodore 64 Pagt ie-i«

Explicit zero page addressing convention

When zero page mode of addressing is desired it is necessary

to explicitly indicate such desire by preceeding the address

expression with the "left-arrow" (B). This is the only way the two-

byte zero page addresssing mode will be selected. Omitting it will

result in the long form of the instruction. This provides the

capability of addressing zero page with a long instruction if desired.

Note that this requirement is for ZP, ZPtX and ZP»Y modes only and

not for (indir*X) and (indir),Y modes.
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Graphics on the Commodore 64

These next chapters will attempt to expand upon the

information found in the Commodore 64 Programmer's Reference Guide

(PRG). The PRG should be considered an indispensible reference tool.

In it you will find complete descriptions of the various special

function integrated circuits which make the 64 the powerful computer

it is. Also included is information on the 64's memory organization

and the "kernal" routines and how to use them.

This chapter will provide the machine language programmer's

perspective on graphics generation. Joy stick and paddle usage and

sound generation will be covered in the following chapter. The last

chapter will cover some of the internal programs contained in the 64's

ROM and the means by which you can make use of them.

The Video Interface Chip

The Video Interface Chip (the VIC-II) is the electronic

machine* the integrated circuit within the 64 whicht among other

things* causes patterns to be displayed on your video screen. It is

also known as the 6567. The VIC-II is connected to the 65ie and the

RAM and ROM of the 64 via the address* data and control busses.

The VIC-II runs continuously from the time the power is turned

on untill it is turned off. It is under control of its own internal

program which is built into the electronics of the chip. It has 47 8-

bit registers which may be addressed by the 65i0 and therefore any

program running on the 6516. The registers are the communication

medium by which we direct the operation of the VIC-II. They are wired

directly to the address bus in such a way that we can change their

contents by storing data into addresses $Deee through $D82E (53248-

53295). POKEs from BASIC and STAs» STXs and STYs from machine

language into these locations will modify the internal registers of

the VIC-II. We will look at the specification of these registers and

how they cause the various graphics capabilities to be activated and

controlled.

Bank Switching

But first* it is necessary to understand the bank switching

capability incorporated into another chip* the 6526 Complex interface
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adapter chip #2 (CIA#2). Bank switching is a term which refers to the

capability of disconnecting one bank of memory and connecting another

bank in its place. When the VIC-II is doing its thing, it "looks at"

a bank of memory to find the patterns to send out of the video port

and onto your video screen. The VIC-II is designed to "see" any one of

four 16K banks of memory. Which bank it sees at any one time is

determined by the "bank-select bits" of the CIA#2. To switch between

.different banks the following machine language program will do the

trick:

BANK EQU 3 COULD BE 8,1,2 OR 3

LDA $DD82 DATA DIR REGISTER

ORA #3 BITS 8,1 SET TO OUTPUT

STA *DD82

LDA $DD88 OUTPUT PORT A CIA#2

AND #*FC FORCE BITS 8,1 OFF

ORA #BANK SELECT BANK

STA $DD88

When the 64 is powered up bank 0 is selected automatically.

The address range of the various banks and the corresponding value

which must be specified in the BANK EQUate follow:
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BANK EQU BANK NUMBER BANK ADDRESS RANGE

3 6 *8888-*3FFF (8-16383)

2 1 $4888-*7FFF (16384-32767)

1 2 $8888-*BFFF (32768-49151)

8 3 $C888-$FFFF (49152-65535)

All data used by the VIC-II in its creation of video images

will come from the bank of memory which is currently selected via the

CIA#2. The map of what data will be found where in each block will

depend on the values stored in the various VIC-II registers. But

before getting into that lets look at how the VIC-II puts characters

on the screen.

Multiple character sets

You have no doubt noticed that each character which is

displayed on your screen is a composite of up to 64 dots arranged in

an 8 by 8 block. The information which describes the characteristic

dot pattern of each character is stored in the 64's ROM.

A certain section of RAM is reserved for use by the 64 as

"screen memory11. There is one byte of screen memory reserved for every

character position on the screen. Since there are 46 columns and 25

rows there are 1888 bytes of screen memory. The data stored in each

position of screen memory may have the value of 8-255# the range of

values of one byte of information. This may be considered the

character "code". Bach code stand* for me unique pattern of dots.

There are therefore 256 possible dot patterns which may be displayed

at any one time. The VIC-II scans continuously through screen memory

and translates each code for all 1666 screen positions. The

translation process consists of using the value of the code (8-255) to

compute the displacement (or number of bytes) into a character pattern

table. Each character pattern has 64 bits (8 bytes) of "dot"

information. So to find the right pattern, the VIC-II multiplies the
value of the code by 8 and adds the result to the starting address of

the character pattern table. There, the VIC-II finds the 8-byte

pattern of dots to send to the video screen. The first eight bits of

a character's pattern are the top row of dots which appear on the

screen. The second eight bits are the second row and so on untill the
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eighth eight bits for the bottom row. The VIC-II does this scanning

of screen memory and translating the codes found there using the

pattern table and sending the dot information out to the video port

all automatically and continuously.

The BASIC "PRINT" statement causes "screen codes" to be stored

in screen memory. It is possible also to POKE screen codes into

screen memory. Machine language programs may store screen codes into

screen memory. The VIC-II automatically and continuously scans the

screen memory, getting one screen code per screen location and*

translates the screen code into an eight by eight dot pattern which it

then sends to the video output port to be displayed. In appendix B of

the PRG there is a table of screen codes and the corresponding

characters which get displayed. These are the standard characters

which are burned into the 64's character-table ROM at $DOG0-$DiFF

(53248-55295).

You are probably aware that when you hold the Commodore and

the Shift Keys down simultaneously* the characters which appear on the

screen are from a second character set. One character set contains

upper and lower case characters and the other contains upper case and

the graphics characters. There are two sets of 8 x 8 patterns stored

in ROM and the VIC-II can be "switched" between the sets. In fact,

the VIC-II can be switched between several different tables of 8 x 8

patterns. One of the VIC-II's registers determines where in the bank

the character table is to be found. Since each bank which the VIC-II

can see is 16K bytes long and since 256 characters take 8 * 256 or

2648 (2K) bytes, there can be eight different character tables

accessible to the VIC-II in any given bank. Since there are 4 banks

available, there may be up to 32 separate character sets accessible to

the VIC-II.

The register which controls which of the eight blocks within

the current bank to use for the character pattern table is found at

53272 ($0618). It takes three bits to specify the pattern location.

These three bits are bits 3, 2 and i of the register. The four high-

order bits of this same register are used for another purpose and must

not be modified when switching between character sets. Bit-0 is not

significant. The following routine illustrates the selecting of the

desired character-pattern table.
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TABLE EQU 0 OR 2 OR 4, 6, 8, 10, 12 OR 14

LDA 53272 GET THE REGISTER

AND tt*F0 TURN BITS 3-8 OFF

ORA #TABLE SET THE TABLE-SELECT BITS

STA 53272 RESET THE REGISTER

The value of the TABLE EQU selects the location of the

character pattern table within the selected banK. The following

table gives the position within the bank for the various possible

values of TABLE:

TABLE LOCATION WITHIN BANK

8 *0000-*87FF <0-2047)

2 *8880-$0FFF <2048-40?5)

4 *1000-*17FF (4096-6143)

6 *1800-$1FFF (6144-8191)

8 *2000-$27FF (8192-10239)

10 $2800-*2FFF (10240-12287)

12 $3000-$37FF (12288-14335)

14 $3800-$3FFF (14336-16385)

Since the location specified above is the relative address

within the currently selected bank, to arrive at the actual address of

the character pattern table it is necessary to add the starting

address of the selected bank to the addresses above. Selecting an

alternate table address and creating your own pattern table is the

technique which you must use to create your own custom characters and

to do high-resolution bit-image graphics. We'll discuss those

capabilities more later.

The Commodore 64 comes pre-programmed with only two character

pattern tables* the uppercase/graphics set and the upper/lower case

set. These are in ROM at $D0Oe-DiFF and $D300-*DFFF. This also

happens to be where the VIC-II's registers reside* which seems mighty

confusing at first. There is an explanation. The 6510 has a very

interesting feature which allows both RAM, ROM and I/O to all occupy

the same address space. Not at the same time of course. The bank

switching concept is used here. We discussed at the end of Chapter 7

the special characteristics relating to location 0 and i in the 6510's

memory space. We mentioned at that time that the 64 uses the I/O port
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at 8,1 for its own special purposes. This port controls a bank-

switching device which switches RAM* ROM and I/O in and out of the

memory space. This is the way the 64 can have a full 64K of RAM, 26K

of ROM and 4K of I/O all addressable on a 16-bit address bus which can

only have 64K possible unique addresses.

If the programmer wishes to copy a part or all of the character

ROM into some part of RAM, it will be necessary to switch the I/O at

$D9ee out and switch the ROM in. Because interrupt processing on the

64 utilizes the I/O which you want to switch out, it is necessary to

disable interrupts before switching in the ROM. The following routine

will turn off interrupts! switch in the ROM, move the character tablet

switch the I/O back in and turn interrupts back on.

LOOP

DONE

LDA

AND

STA

LDA

AND

STA

LDX

LDY

LDA

STA

INY

BNE

DEX

BEQ

INC

INC

JMP

LDA

ORA

STA

LDA

ORA

STA

56334

#*FE

56334

Bl

#*FB

Bl

#8

#8

<SRCE),Y

<DEST),Y

LOOP

DONE

BSRCE+1

BDEST+1

LOOP

Bl

#4

Bl

56334

#1

56334

SET BIT 8 OFF

TURNS INTERRUPTS OFF

BIT 2 OFF

SWITCHES ROM IN

COUNT OF PAGES TO MOVE

BYTE COUNTER

DECR PAGES BY 1

NEXT PAGE OF DATA TO MOVE

NEXT PAGE OF WHERE TO PUT IT

DO NOTHER PAGE

SWITCH I/O BACK IN, ROM OUT

TURN INTERRUPTS BACK ON

This routine assumes SRCE and DEST are labels defined elsewhere

in the program which address two-byte zero-page vectors which have

been pre-set to address the character pattern ROM and the place you
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wish to move the character table to.

When the system is powered up bank 0 and TABLE 4 are

automatically selected by the power-up program. The 64 has another

feature which can be either convenient or a bother depending on your

needs. When bank G or bank 2 is selected and the TABLE value is 4 or

6 the VIC-II will get the character patterns from the standard ROM

pattern table rather than from RAM as you might expect. Thus, the

VIC-II sees the ROM character patterns at $1000-$1FFF and at $9000-

$9FFF even though there is really RAM there. It's a very tricky chipf

that VIC-II. Note that this is a VIC-II related phenomenon only. The

memory at these addresses is really RAM and you may treat it as such

for all purposes. Programs and data stored there will not be in any

way molested.

Now* to create your own custom characters you must build a

pattern table which describes the dot patterns of the characters you

wish to build. The pattern tables consist of up to 256 patterns. Each

pattern has eight bytes. A bit turned on in any of the bytes will

cause the corresponding dot on the screen to be illuminated. (The

screen dots are also called pixels which comes from "picture

elements",)

In the standard pattern table the screen code "0" refers to the

first 8-byte pattern, that of the character "@". This pattern may be

found beginning at 53248 ($D000) when the ROM has been switched in.

ree the above routine for switching the ROM in machine language. To

do it in BASIC the following routine could be used.

POKE 56334,PEEK(56334)AND254: POKE i,PEEK(i)AND25i

The second character in the standard character ROM starts at 53256 and

is the pattern for the letter "A" (screen code i). Every eight bytes,

another pattern is stored. This goes on for 256 8-byte patterns. The

screen codes 128-255 are the "reverse" of the first 128 patterns.

That is, where a bit is on in one, it is off in the other.

The first byte of screen memory holds the character code which

corresponds to a 8 by 8 pattern in the table to be displayed in the

first column of the first row of the screen. The first 40 positions

of screen memory correspond to the first row of the screen. The

second 40 characters correspond to the second row and so forth.

At power-on time the 64's bank address is initialized to $0000

and the screen memory location is set to $0400 (1024). You may create
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and switch between several screens very rapidly to create the effect

of a foreground/background or for other interesting effects.

If you POKE 1024,i the screen code "1" will be placed in the

screen memory position corresponding to the upper left character %

position of the screen. Do it and you should see the letter "A"

appear there. The VIOII has translated the value i into the

character pattern for the letter "A" by computing Kthe character

code) * 8 (the number of bytes per pattern) and adding that to the

start of the character pattern table which starts at 53248 (ROM

location which can only be PEEKed by switching the I/O out and the ROM

in as explained above). It starts at that address (53256) building

the dot pattern to send to the video screen. It finds the following

eight bytes of data starting at 53256:

addr dec hex binary

53256 24 $18 00011000

53257 60 $3C 00111100

53258 102 %66 01100110

53259 126 $7E 01111110

53260 102 %66 01100110

53261 102 %66 01100110

53262 102 %66 01100110

53263 0 $00 00000000

If you look at the above pattern of ones and zeros, you will

be able to see the shape of the character "A" formed by the ones on

the backgraound of zeros. All of the characters7 shapes are formed in

the same fashion. The characters you form in your program must follow

the same rules.

To create the new characters it is necessary to build a set of

8-byte patterns in the same way the original set is constructed. It

is not necessary to reserve a complete 2048 byte block of memory for a

complete 256 characters if you only have a few characters you wish to

ever see on the screen. However, you may not use both the standard

sets and any special programmed sets simultaneously. Once the bank

address and the VIC-II's register at 53272 ($D0i8) has been set, the

entire screen will be generated using the character patterns found at

the specified pattern table area.

A
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Multiple Screens

The location of screen memory is determined by both the 16K

bank selected as described above and the high-order 4 bits Df the

register found at 53272 ($D013). The location of screen memory within

the bank may be selected with the following simple routine:

SCRN EQU $60 (OR $10 ,20 ,30 ,40 ,50 ,.. .E0 ,F0)

LDA $D018 GET REGISTER

AND #$0F TURN OFF HIGH 4 BITS, SAVE LOW 4

ORA #SCRN TURN ON THE SCREEN SELECT

STA $D018 SAVE NEW REGISTER

There are 16 possible locations within the current bank at

which screen memory can begin. Screen memory is 1000 bytes long (25 x

40). The following table defines the displacement within the bank for

the beginning of each of the possible screen locations and the value

of SCRN which will select each.

SCRN SCREEN MEMORY STARTING ADDRESS WITHIN BANK

$60

$10

$20

$30

$40

$50

$60

$70

$80

$90

$A0

$B0

$C0

$D0

$E0

$F0

$0000

$0400

$0800

$0C00

$1000

$1400

$1800

$1C00

$2000

$2400

$2800

$2C00

$3000

$3400

$3800

$3C00

(0)

(1024)

<2048)

(3072)

<4096)

<5120)

<6144)

(7168)

<8192)

<9216)

<10240)

(11264)

(12288)

(13312)

(14336)

(15360)



Iniidt The Commodore 64 Page 1 i-10

Color controls

The border around the area where characters are displa/ed is

called the border or exterior area. The color of that area may be

set independently o-f all other colors. The register at 53280 controls

the border color. To set it the following program sequence may be

used:

BORDER EQU 53288

LDA UCQLOR MAY BE IN RANGE OF 9-15)

STA BORDER

COLOR must have been de-fined in the label -file o-f some EQU

with the operand being a number having the value o-f 0-15. The value

chosen will determine the actual color o-f the border area:

0 - Black 8 - Orange

1 - Wh i te 9 - Brown

2 - Red 18 - Light Red

3 - C/an 11 - Gray 1

4 - Purple 12 - Gray 2

5 - Green 13 - Light Green

6 - Blue 14 - Light Blue

7 - Yellow 15 - Gray 3

The color of the background of the screen ma/ be selected with

the same variety of choices. The register which controls background

color is at $D02i (53281). A similar few statements may be used to

modify the screen color.

SCRNCLR EQU 53281

LDA ttCOLOR

STA SCRNCLR

Character colors

The individual characters displayed on the screen may have their

colors set independent of any other character. There is a block of

RAM reserved for just this purpose. Unfortunately, it is one area of
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control information which is not selectable like the screen or

character pattern table. That is, there is only one color memory area

and it defines the color of each of the 1000 character positions on

the screen regardless of which screen memory or character set you are

using. The 1000 bytes of color memory starts at 55296 ($D800) and

runs through 56295 ($DBE7). The first 40 bytes define the color of

the top row of characters and so on. The 16 possible colors and the

vlaues which correspond to them are those listed above for the

background and border.

Alternate display modes

There are two control bits which further determine the way the

V7C-II interprets character shape data from the character memory. The

4-bit in the register at 53270 sets the multi-color mode. The 5-bit

of the register at 53265 sets the high-res bit map mode. Either or

both of these bits may be set and reset by the programmer by typical

bit-manipulation code:

HIRES EQU 53265

MULTI EQU 53270

SETHI LDA HIRES GET THE HIRES REGISTER

ORA #32 OR ON THE 5-BIT

STA HIRES STORE THE NEW HIRES REGISTER

SETMC LDA MULTI GET THE MULTI-COLOR REGISTER

ORA #16 OR ON THE 4-BIT

STA MULTI STORE THE NEW MULTI-COLOR REG

CLRHI LDA HIRES

AND #*DF AND OFF THE 5-BIT

STA HIRES

CLRMC LDA MULTI

AND #*EF AND OFF THE 4-BIT

STA MULTI

The way in which the video display is created depends upon the

value of these two bits and sometimes on the value of the individual
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screen color memory bytes. The -following table summarizes the

possibilities:

ModeMulti-

col OP

0

i

1

1

0

Hi-res

0

0

0

1

1

Bit-3 o-f

color mem

any

0

i

any

any

Std Char -'en tire screen)

Std Char (this character)

Multi-color (this char)

Multi-color bit map (screen)

Bil mapped hi-res (screen)

Multi-color Characters

If multi-color is selected and hi-res is not, the characters in

the character pattern table will all be displayed in what is called

multi-color mode. In multi-color mode of display* the character

table which describes the shape of the patterns of each of the

characters will be interpreted in a different fashion by the VIC-II.

In the standard character display mode each of the 64 bits of the

character pattern represents a background/foreground choice (bit on =

display the pixel in the color set in color memory for the character

in question ; bit off = pixel is set to background color i.e.

invisible). Here, in multi-color mode, the characters are of lower

resolution. Each byte of the character pattern describes only four

pieces of display information instead of eight. The bits of the

pattern information are grouped in twos and the characters displayed

will have four double-wide dots in eight vertical rows. The pairs of

bits in each byte will determine the color of the double-wide dots in

the following way: If the pair is a 00 the color of that dot will be

the same as the background, or a non-display dot. If the value is a

01 the color of the double-wide dot will be that of the "background

color #1" which is set in the register at 53232 ($D022). If "the
value of the bit pair is a 10, the color will be that set in the

register at 53283 ($D023) (the background color #2). If the bit-pair

has the value of 11 the color of the displayed fat dot will be the

color which is found in the color memory associated with the character

position on the screen. Since the 3-bit of the color memory byte must

be on to activate multi-color character mode, only the second eight

colors (colors 8-15). may be used for the "character color" in multi-
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color mode.

If bit-3 of the character color byte for any given screen

position is not on* the usual standard resolution character is

generated. Here, the only colors which may be used are 0-7.

Bit mapped Graphics

In this mode each pixel on the screen may be individually

turned on and off. It is useful for plotting geometric shapes and for

graphing functions and creating complex graphics.

Since there are 1000 screen positions and each position has 64

pixels* it must take 64*000 bits or 8000 bytes to store all the screen

information in bit-mapped mode. Bit-mapped mode is activated by

setting bit-5 of the register at 53265 ($D011) as indicated above.

Once the mode has been selected* • the VIC-II now uses screen memory to

indicate the color combination of the bits which are turned on and off

in the eight by eight square of the screen. The high-order four bits

tell it the color of the bits which are set to i. The low-order four

bits tell it the color of the bits which are set to 0.

But where are the bits stored which indicate pixels to

illuminated in the two possible colors? In standard character mode

recall that the screen memory bytes told the VIC-II where to go to

find the character bit pattern to display on the screen. In bit

mapped mode the character memory is still where the information is

stored. But now the first eight bytes of character memory always

corresponds to the 64 pixels in the upper left corner of the screen.

The first byte contains the pixel information for the top row of eight

dots. The second byte contains the information for the row of eight

dots immediately below the first row and so forth untill the eigth row

eight dots in the upper left corner of the screen. The second eight

bytes contains the dot information of the second 8 by 8 square on the

first row of the screen. The 40th group of eight bytes corresponds to

the upper right corner and the 1000th eight bytes contains the

information for the lower right 64-bit square. The program in

the appendix illustrates in detail how the machine language programmer

can plot points on the screen by computing the proper byte and bit to

turn on or off given a pair of numbers which can vary from 0-319 and

0-199 (the x and y axis of the plot).
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Multi-color bit-mapped mode

By setting both the hi-res and the multi-color bits you can bit

map using three colors in addition to the background screen color.

This is similar to multi-color mode in that the dots are fat in the

horizontal direction and the bits which indicate what is on and off on

the screen are grouped in pairs. The same amount of memory is

required to multi-color bit map the screen, 8066 bytes. It is* like

in standard bit-map mode* found where the character pattern table is

set to be. The four two-bit combinations in each byte tell the VIC-II

which colors to make the fat dots on the screen. A "00" combination

says make it the background color. A "01" says make it the color

indicated by the high-order four bits of the associated screen memory

byte. A "10" combination says make it the color indicated by the low-

order four bits of the screen memory byte. Finally* the "11"

combination says make it the color set in the color memory byte

associated with the screen location in question.

Extended background color mode

Unbelievably* there are still more modes of display available

through the combined electronic intelligence of the 6510 and the VIC-

II chip. If you have somehow made it this far* you might as well wade

through this one too because sprites are still to come.

This mode is selected by turning on the 6-bit of the register

at 53265 ($0011). What it does is to let you vary the background

color from character to character if you are not satisfied with having

the same background on the entire screen. The way it's done is: The

two high-order bits of the screen memory bytes are interpreted as a

background color selector. The first thing this means is that in this

mode the character set is limited to 64 characters (the remaining 6

bits can only have 64 possible unique values). The two selector bits

indicate the register for the VIC-II to use to make the background

color. The following table gives the possibilities:
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Bit-7 Bit-6 Background color register

0

e

i

i

e

i

8

i

53281

53282

53283

53284

<*D621>

<*D022>

<$D923)

<*D024>

You may set the registers with the usual 16 possible color

codes as identified above.

Sprite Graphics

The subject we've all been waiting for. As you probably know,

sprites are special movable -figures which may be designed to have any

shape and color combination and will coexist with all other modes of

display simultaneously. They are nice game programmers' tools. It is

recommended you read the description of sprites and their capabilities

in the PRG, as it is quite good. Once you have a comfortable feeling

about machine language you will be able to translate the BASIC

statements given in the PRG easily to assembler.

Eight sprites may be defined at one time. The method of sprite

definition is identical to that of custom character definition. In

fact, there are two modes of sprite definition* standard and

multicolor, just like characters. The multi-color mode mimics the

other multi-color standards.

The standard sprite is 24 dots wide by 21 high. The multi

color sprite takes just as much space on the screen but each

definable dot in the horizontal direction is twice as fat as a

standard dot. Therefore* there are only 12 definable horizontal

positions in the multi-color sprite. Also, the bits which define the

shape of the sprite are grouped in pairs for multi-color, again just

like multi-color characters. The standard sprite has higher

resolution but may be of only one color.

The memory location where sprites are "drawn" must be in the

same 16 K block as the screen memory and character memory as explained

at the beginning of this chapter. At the end of the 1 K block of

memory which holds the screen memory the VIC-II expects to find the

pointers to the sprite definitions. Each pointer is a single byte and

may have a value in the range of 0-255. The pointer value, when
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multiplied by 64 and added to the base address of the bank, will point

the VIC-II to the sprite definition block. The VIC-II does all that

arithmetic itself. You needn't worry about it any more than to set itN

up once correctly. That is* you must pick the place in memory where

you would like to build a sprite (it must be on an even 64-byte

boundary)* compute how far that is from the beginning of the block,

divide by 64 and store that value in the sprite pointer location at

the end of the screen memory ik block. Got that?

The sprites are numbered 0-7 and the corresponding sprite

pointers are in locations 1016-1023 of the screen memory block. The

sprite number also specifies the sprite intersection priority. The

lower the sprite number, the higher the priority. This means that

when two moving sprites pass each other on the screen, the one with

the lower sprite number will pass in front of the higher numbered

sprite. Transparent areas in the front-passing sprite will enable the

lower-priority sprite to be seen through the "window".

There is a "sprite-enable" register at $D0i5 (53269) which is

the way sprites are triggered once they have been built and pointed-

to. The VIC-II, when it detects a sprite has been enabled, will find

its shape definition via the pointer, its desired location on the

screen via another set of registers. It will proceed to then build

the video signal to reflect the description you have provided it. The

sprite-enable register has an enable bit for each sprite. Logically

enough, bit-0 enables sprite-0 and bit-l enables sprite-i, etc.

Each standard sprite may have any of the 16 possible colors.

The registers which determine sprite color are at 53287-53294 ($D027-

$D02E) for sprites 0-7 respectively. All dots which are "on" as

flagged by a bit on in the 63 byte sprite descriptor area will have

the color indicated in the appropriate register. The other space as

defined by bits turned off (set to 0) will take the color of whatever

background is behind the sprite at any given time. As mentioned

before, the sprites may have more than one color if defined as a

multi-color sprite. This is accomplished by setting the corresponding

bit (0-7) in the sprite multi-color register at 53276 ($D01C). When a

sprite is so selected, the VIC-II will interpret the bit pairs of the

sprite shape description in the following way: A "00" bit pair will

cause transparency. That is, the background will shine through. A

bit pair of "01" will cause the double-wide dots having that

definition to be displayed in the color set in the sprite multi-color

register #0 at 53285 ($D025). The bit pair "10" will cause the
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aforementioned sprite color register appropriate for the sprite in

question (at 53287-53294) to appear. Finally, a bit pair of "11" will

cause the color set in sprite multi-color register #1 at 53286 ($D026)

to shade all parts of the sprite which are set up with the "11"

definition.

Sprites may be expanded in both the horizontal and the vertical

directions. Registers at 53277 ($D01D) and 53271 ($D017) are the

sprite-expand registers for the horizontal and the vertical directions

respectively. The bit-positions in each register correspond to the

sprite to expand. When the bit is on the sprite will be automatically

expanded to twice its size in the axis selected. The direction of

expansion is to the left and toward the bottom of the screen.

To position a sprite on the screen, it is necessary to tell the

VIC-II where you want it to go. As you might have guessed, there are

some registers which do just that. The sprites may be positioned on

or off the screen. There is a sort-of sprite overflow area on all

borders of the screen. Sprites may be made to drift smoothly off the

screen by properly defining the position of the sprite.

The position which you must give to the VIC-II is that of the

upper left-most dot of the sprite, even if that dot is defined as an

invisible dot. The position you define is a horizontal pixel

position and a vertical pixel position of that upper-left corner of

the sprite. Horizontal positions may vary from 0 to 511 and vertical

from .0 to 255. Since there are only 320 pixels by 200 in the actual

viewing area this leaves the necessary space above, below and to the

right and left of the screen for off-screen sprite movement. The left

of the screen is horizontal pixel position 24 and the right side of

the viewable screen is pixel position 343. So, a sprite would be

visible at least partially if the specified horizontal position were

between i and 343 (assuming that there are non-transparent dots in the

rightmost and leftmost columns of dot positions in the sprite

definition). Sprites expanded in the horizontal direction will be at

least partially visible if the specified horizontal position is less

than 343 or greater than 488. The second condition is due to the

wrap-around nature of the pixel addressing scheme used by the VIC-II.

Position 511 is equivalent to -1 on the left side of the screen.

The top of the screen may be considered to be vertical pixel

position 50 (from the top of the off-screen area which starts at 0).

The bottom of the screen is pixel position is 249. Normal sprites

will be completely off the top of the viewing screen if the vertical
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sprite position is set at 29 or less. It will be off the bottom if

the vertical position is 256 or greater. Expanded sprites will be off

screen if less than 9 and if greater than 249.

The registers to set position information are at 53248 through

532634. The first 16 registers are the horizontal and vertical

position registers for sprites 0-7 respectively. The horizontal

position needs more information than can be contained in a single

byte* however. Up to 512 unique pixel positions may be specified for

the horizontal direction. Therefore another bit is required to

completely define the position. That bit is found in the Most-

significant-bit register at 53248. Each sprite, 0-7 has its

horizontal most-significant-bit of position information stored in the

corresponding (6-7) bit positions of the MSB register. Smooth

horizontal sprite movements will take some extra care from the

programmer to keep track of the position and set that extra bit

correctly.

Finally, collision detection must be covered. Sprites may

collide with other sprites and with the background. It can be nice to

know when a collision has occurred. The versatile little VIC-II

watches over its video domain and reports all such happenings to you.

All you have to do is read the register which the VIC-II maintains for

that purpose.

Collisions are defined as a non-transparent portion of a sprite

overlaps a non-transparent portion of another sprite or background

characters. For the purpose of collision detection, multi-color

sprite dots defined with the "01" bit pair are considered transparent.

A little quirk there.

The sprite-sprite collision register is at 53278 ($D0iE) and each

bit in the register stands for a sprite. Any time a sprite is

involved in a collision with another sprite both sprite bits are

turned on in the collision register. So, if you care if collisions

occur, it will be necessary to check the register after every movement

of the sprites you are concerned about. Reading the register will

cause it to be cleared automatically. You can not prevent that from

happening, so if you want the information for future reference you

must store it someplace where you can get at it.

Sprites can also collide with the background (text, etc). Like

sprite-sprite collision, sprite-data collisions are kept in a register

(53279 $D01F). Each sprite has its own bit (0-7) and indicates that

that sprite has been involved in a collision. This register is also
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cleared by a read of the register (LDA, LDX, LDY instruction)) so save

it if you don't want to lose it.

Once again, its very strongly recommended you study the PRG for

all areas of graphic programming. The insights which may be gained

from reading and understanding the BASIC programmer's perspective on

these subjects will greatly increase your understanding and ability to

move into assembly language.
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The 653 1 — A Sound synthesizer

The Commodore 64 comes equipped with a very respectable single-

chip sound synthesizer. It has three voices, each with independent

attack-decay-sustain-release (ASDR) envelopes* -four Kinds of filters*

a resonance control and a master volume control. The programmer can

make the computer generate a wide variety of musical and other sounds*

simulating various instruments solo and in concert. The sound output

may be played through the speaker on your TV or directed to your

stereo for high-fidelity output.

The music and associated wave shape theory which is required to

accomplish these ends is considerable. This chapter will present you

with the necessary technical information on the requirements for

programming the synthesizer. It will not go deeply into the theory

of synthesized sound. The PRG is a source of more detailed

information on the subject.

Register Assignment

The synthesizer chip is called the 6581 or "SID" (sound

interface device) chip. The chip should be initialized before

attempting any sound generation. It has a set of 29 registers which

are directly addressable by the 6510 and therefore any program running

on it. Initializing may be accomplished by setting the registers to

zero:

SID EQU *D488

LDX #$18

LDA #8

LOOP STA SID,X

DEX

BPL LOOP

The register set is a contiguous string of bytes starting at

$D400 (54272) and running through $D4iC (54230). This block of

registers is in the I/O block at $D000-$DFFF which also contains the

VIC-II chip and which may be switched with the character ROM as

explained in the previous chapter.
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Tone Generation

The SID chip contains three tone generators* their associated

envelope generators and the filtering and volume controls. There are

seven registers for each of the three voices. The first voice's

registers are at $D400-D406 (54272-54278). The second voice is at

$D407-$D40D (54279-54285) and the third voice is at $D40E-D414 (54286-

54292).

The individual voices may have frequencies ranging from 0-

3894 hz. To cause any given frequency to be generated* it is

necessary to store a 16-bit number in the first two registers for the

voice desired. The value of the number to store is 16.777 times the

frequency desired. In Appendix 0 of the PRG there is a description of

the design criteria for a routine to select any of the 12 semi-tones

of any of eight octaves. The following program segment will

accomplish those ends:

LOW

HI

NOTES

C7

C#7

D7

D#7

E7

F7

F#7

67

G#7

A7

A#7

B7

EQU

EQU

EQU

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

BYT

*D468

*D401

*C880

34334

36376

38539

48838

43258

45830

48556

51443

54502

57743

61176

64814

VOICE 1 FREQ LOW

FREQ HI

SELCT EQU 3

; REG A MUST HAVE NOTE IN LOW 4 BITS (0-11)

,• OCTAVE IN HIGH 4 BITS <8-7>

TAX SAVE FOR OCTAVE

AND #*8F JUST THE NOTE

ASL A NOTE * 2
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TAY

LDA

STA

LDA

STA

TXA

AND

TAX

ADC

BMI

ROR

ROR

CLC

BCC

RTS

INDEX INTO NOTE TABLE

NOTE+1,Y

HI

NOTE,Y

LO

RETRIEVE NOTE/OCT

#*F8 JUST THE OCTAVE

#*16

OUT

HI DIVIDE FREQ BY TWO

LOW FOR EACH OCTAVE

BUMP

ALL DONE

BUMP

SHIFT

OUT

Wave Shape regulation

Each voice may have its wave shape independently set. The

wave shape affects the timbre of the generated tone. The four

possible waveforms are triangle (flute type sound)* sawtooth (brass

type sound), variable pulse (wide variety of possibilities), and white

noise. The shape information is set in bits 7-4 of the fourth byte of

each voice's register set. More than one wave shape may be selected

per voice but the resulting waveform will not be generally useful.

The following routine will set the wave shape.

SID EQU *D488

VOICE EQU 8 <OR 1 OR 2)

SEC

LDA #8

ROR A ONCE FOR NOISE

ROR A TWICE FOR PULSE

ROR A THRICE FOR SAWTOOTH

ROR A FOUR TIMES FOR TRIANGLE

STA V0ICE*7+4+SID
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Pulse width must be specified if pulse waveform is selected.

The pulse width is set by specifying the percentage of time the pulse

is on versus the time it is off. Fifty percent creates a square wave.

0% and 100% cause a constant signal output which is therefore not an

audio tone. The width is set as a 12-bit value which is related to

percent on-time by the following formula: WIDTH = TIME% * 40.95 The

low-order eight bits are set in the third register of the voice's set.

The high-order 4 bits of WIDTH are set in the low four bits of the

fourth register.

WIDTH EQU PCTQN*40.95

LDA #WIDTH/256

STA M0ICE*7+SID+3

LDA HWIDTH&255

STA VQICE+7+SID+2

Each voice has a programmable envelope generator which allows

you to program the volume of the output signal in several phases. The

attack phase is when the note begins and increases in volume to its

maximum. The decay phase follows the reaching of maximum volume and

continues as the volume decreases till it reaches the sustain phase.

Here the note maintains a constant volume until the release phase,

when the volume decreases back to zero. The envelope generator allows

you to program the rate of volume increase in the attack phaset the

rate of decrease in the decay phase* the level at which it sustains

and the rate of final decrease during the release phase.

The note is started by turning on the start bit (called the

gate signal) in bit-0 of the fifth register of the voice:

LDA #1

ORA MQlCE*7+SID+4

STA V0ICE*7+SID+4

The attack rate is set in the sixth register* the high-order

four bits (7-3). The value of the four-bit field corresponds to the

time it takes for the tone to reach maximum volume as indicated in the

following table.

The decay rate is set in the low-order four bits of the same

register as the attack. The corresponding table values (in seconds)

are the times for the volume to decrease to the sustain level.
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The sustain level is a four-bit value in the high-order nybble

of the seventh register of each voice. The sustain value (0-15)

controls the relative volume of the generated tone at which decay

stops and the note is held until released. The volume at which

sustain occurs is in ratio to the peak volume as the sustain register

is to 15. Note that the peak volume is the same for all voices and

is under control of the master volume control. The release

rate is set in the low-order nybble of the seventh register. It

specifies the time it will take the note to complete its decay once

sustain has been terminated.

The note is turned on (gated) by the gate bit which is bit-0,

the low-order bit of the sixth register. When this bit is i the note

will commence. It will go through the attack, decay and sustain phase

and hold there until the bit is set to 0.

The following table gives the value of the various four-bit

registers which control the envelope generators and the time in

seconds between commencement and cessation of each phase.

VALUE ATTACK DECAY/REL VALUE ATTACK DECAY/REL

0
4

X

2

3

4

5

6

7

.882

.888

.016

.824

.838

.856

.868

.88

.886

.824

.848

.872

.114

.168

.284

.24

8

9

18

11

12

13

14

15

.1

.25

.5

.8

1.8

3.8

5.8

8.8

.3

.75

1.5

2.4

3.8

9.8

15.8

24.8

Filtering

There are four kinds of signal filtering plus resonance

control which may be employed. Individual voices may be independently

connected and disconnected to the filter. The filter has an ii-bit

register which is the frequency cut-off point and ranges from 30 to

12khz. The low-pass filter will reject all frequencies above the cut

off frequency. The high-pass will reject all frequencies below the

cut-off. The band pass filter will allow only the selected frequency

and the notch-reject will pass all frequencies except the specified
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-frequency. Finally* the resonance control has a range o-f 16 values

(0-15) which regulate how much resonance will be present on the output

signal (0 = no resonance* 15 = maximum resonance).

The resonance control register is in bits 4-7 o-f location $D017

(54296). Bits 0-3 control which voices (i-3 plus external input) will

be routed through the filter. Bits 3-0 of $D418 controls the peak

volume. Bits 6-4 control which filter effect is active ( bit 6 =

high-pass* bit 5 = band-pass* bit 4 = low-pass* bits 6+4 = notch

reject).

The following routine could be used to select the filtering:

LDA SID+24

AND tt*8F

ORA #TYPE <16=L0W, 64=HIGH, 32=BAND, 80=NOTCH-REJ)

STA SID+24

The following routine might be used to set the filter frequency:

FREQ EQU 567 ANY VALUE BETWEEN 8 AND 2047

LDA #FREQ/8

STA SID+22

LDA #FREQ&7

STA SID+21

The relationship between FREQ and the actual frequency of the

filter is supposedly linear from 30hz to 12000 hz. Experimentation

has not born this out* however* and you are encouraged to do your own

testing of the filter controls.

Mixing

It is possible to mix an external signal with the generated

output signal. One of the pins on the audio output port may be used

for mike or other instrument signal input to the 64. See the PRG for

details.

A machine language approach to paddle and joystick programming

is presented in the PRG and so we will not attempt to duplicate that

information here.
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Internals

The Commodore 64 comes with 16K of ROM in which the internal

operating programs reside. These are the programs which interpret

BASIC programs and which control the input and output devices which

come with the 64 and those which can be added. This block o-f memory

is broken into two segments. The -first* the BASIC interpreter*

extends from $A0ee TO $BFFF. The second, called the "kernal", extends

from $E000 to $FFFF. Some of the kernal programs have been documented

by Commodore in their Programmer's Reference Guide. They deal mainly

with input/output (I/O) processing on the 64. This text will not

attempt to duplicate the information provided in the PRG. It is once

again strongly recommended that you obtain a copy of that reference

work.

There are many other subroutines included in the 64's ROM which

are not covered in the PRG. We will attempt to provide information on

using the more useful of those. We will also present a list of the

entry points of the remainder. Those which are not discussed in

detail may be decoded with the Decoder for your inspection and

understanding.

Floating Point numbers

As BASIC processes your arithmetic expresions* it uses a

variety of machine language subroutines to do addition* subtraction*

exponentiation, trig functions* etc. These subroutines are available

to the machine language program for accomplishing the same functions.

They are all fairly similiar in the conventions of their use* i.e. the

means of passing parameters* getting the results* etc.

Numbers in BASIC may be expressed as either integers or as

"floating point" numbers. Integers have no fractional component.

They are sixteen bit signed numbers which may have the range of

32767 to 32768. Negative numbers are expressed in two's complement

notation as discussed in chapter four.

BASIC does all its computations in floating point mode.

Floating point numbers have fractional components. They are composed

of three portions* the exponent* the mantissa and the sign. The

exponent occupies one byte and its binary value is 123 greater than

the exponent being expressed. The value of the expressed exponent is

the number of bits which the mantissa needs to be shifted. Since the
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exponent expression is stored in "excess 123", the range of actual

exponents is -128 to 127 (stored as 0 to 255). Negative exponents

mean the mantissa (as stored) needs to be shifted to the right and

positive exponents means the mantissa needs to be shifted to the left.

The mantissa is a four byte binary value. It is the shifted

value of the number to be expressed. This is like scientific notation

as used in physics and chemistry. The decimal system of scientific

notation would express the number 12876548.765 as 1.2876548765 * 10

raised to the 7th power. In BASIC you would see this number printed

as 1.2876548765 B07. A decimal exponent of 7 in scientific notation

means the decimal point needs to be shifted 7 places to the right. Or

that the mantissa needs to be multiplied by 10 raised to the seventh

power.

It works the same way with floating point numbers except the

mantissa is in binary and it needs to be multiplied by 2 raised to the

power of the exponent. Multiplying a binary number by two is the same

as shifting it one bit position, e.g. 6 = 0000 0110 and 12 = 0000

1100.

CBM BASIC always normalizes the mantissa before saving it in

the floating point format. This means that it shifts it so the

leftmost bit is always a one bit. The number 6 (binary value = 0000

0110) would be shifted so that the normalized mantissa would be 1100

0000. What goes into the exponent field is 128 plus the number of

significant bit positions in the original number. 0000 0110 has three

«ignificant bit positions, so the exponent would be 131.

A few examples will be helpful. The binary representation of

the floating point storage of the number 6 is:

1006 9811 1188 8800 6008 8880 8886 0888 8888 8888

131 192 8 8 8

$83 $C8 $68 $88 $88

exponent mantissa

The exponent of 131 represents an actual exponent of 3 (131 -

128). You may consider the mantissa as a fraction with the radix

point (decimal point or, rather, binary point) just to its left. The

amount it must be shifted to get back to its actual value is three

bit positions. In other words, the radix point must be shifted from
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the left of the binary number three places to the right.

Other examples:

The number 1 (8088 8881)

1888 8861 1888 8668 6688 6886 6866 6666 6668 6666

12? 128 6 8 8

$81 $86 $88 $86 $86

exponent mantissa

The number 2 <8888 6818)

1866 8616 1888 8666 8666 8686 6686 6666 6666 6686

12? 128 8 6 8

$82 $86 $86 $66 $68

exponent mantissa

The number 3 <8868 8811)

1666 6616 1166 6686 6686 6666 6666 8666 6666 6666

129 192 8 8 8

$82 $C6 $66 $66 $66

exponent mantissa

The number 65 (8166 6881)

1866 6111 1666 6616 6666 6668 8666 8668 6666 6688

135 136 6 6 8

$87 $82 $66 $86 $66

exponent mantissa
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The number 15 (8888 1111)

1888 8188 1111 8888 8888 8888 8888 8888 8888 8888

132 248 8 8 8

$84 $F8 $88 $88 $88

exponent mantissa

The sign of the number is carried in the high-order bit of the

byte following the mantissa. If the sign bit is on, the number is

negative. If off it is positive.

There are two floating point accumulators maintained by BASIC*

FACi and FAC2. FACi is located at $61-$66 <97-103) and FAC2 is at

$69-$6E (185-111). These two accumulators are used for all

mathematical operations. Following the FACs, at $6F (ill), is a sign

comparison flag. The high-order bit, if on* signifies the two FACs

are of differing signs.

Arithmetic routines

The following routines perform mathematical operations using

FACi, FAC2, and values stored in other memory locations. Each routine

may be executed by a JSR instruction to the indicated entry point.

References to memory locations are frequently communicated to various

routines by an address contained in the A-reg (LSB) and the Y-reg

(MSB). We will refer to this format as format-1.

Most of the following routines use the A-reg, X-reg and Y-reg

for communication. It is an interesting fact that when a SYS is done

from BASIC* these three registers are loaded from memory locations

780, 781 and 782 respectively. Additionally, the Processor Status

register is passed in 783. All of the registers are stored back in

these same locations upon returning to BASIC so it is therefore

possible to easily pass information back and forth between BASIC and

machine language programs. You can call the following routines and

those in the Kernal from BASIC by SYSing to them after setting up the

three register storage bytes.
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InttgtrtoFACi - IB391 (45969)

A two-byte integer value in format-i is converted to a floating

point number stored in FACi.

FACitoInttgtr IBiAA (45482)

The FACi is converted to a two-byte integer which is saved into

locations $64,$65 (160,161). The FACi is destroyed.

Memory to FACI *BBA2 (48034)

A five-byte floating point number anywhere in memory is loaded

into FACi. The address of the starting memory location is in format-

1. The sign flag of FACi is set on if the high-order bit of the

mantissa is a one, else it is set off. The exponent is returned in

the A-reg.

ASCII to FACI *B7B5 (47029)

An ASCII string is converted to floating point format and saved

in the FACi. The string may be anywhere in memory and the address of

the starting location must be pointed to by the utility string pointer

at $22,$23 (34,35). The length of the string must be loaded into the

A-reg.

FACI to ASCII $BDDD (48605)

The ASCII representation of the value in FACI will be saved

starting at $0100 (256) and continuing until a $00 is encountered.

Memory to FAC2 $BA8C (47756)

Same as above except using FAC2 and the sign comparison flag is

set. The exponent of FACI is returned in the A-reg.

FACI to Memory $BBD7 (48087)

The FACI is stored into any five byte memory location. The MSB

of the address of the start of the memory location is passed in the X-

reg. The LSB is in the Y-reg. The high-order bit of the mantissa

field is forced to the FACI sign flag.

FAC2 to FACI $BBFC (48124)

A simple move is performed from FAC2 to FACi. FAC2 is not

affected.
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FACitoFAC2 IBC8F (48143)

A simple move is performed from FACl to FAC2. FACl is not

affected.

Logical AND of FACl and FAC2 *AFB9 (45633)

FACl and FAC2 are logically ANDed together* the result ending

up in FACl

Logical OR of FACl and FAC2 *AFB6 (45639)

FACl and FAC2 are logically ORed together* the result ending up

in FACi

FACl = FACi - FAC2 $B853 (47187)

FAC2 is subtracted from FACi, the result replacing FACi. FAC2

is not affected.

FACl » FACl + FAC2 *B86A (47218)

FACl is replaced by the sum of FACl and FAC2. It is necessary

to set the sign compare flag prior to calling this routine. This is

done by EORing locations $66 and %6E (162 and 116) and storing the

result in $6F. It is also necessary to load the A-reg with the value

found in $61 (97). Note that both of these functions are done by the

Mem to FAC2 routine.

FACl = FACi * FAC2 *BA36 (47664)

FACl is replaced by the product of FACl AND FAC2. The same

notes apply as for the above routine. An alternate entry point for

this routine is $BA28 (47656). This entry point will execute the

memory to FAC2 routine before doing the multiplication.

FACl = LOG ( FACl) $B9EA (47954)

FACl is replaced by the LOG of FACl.

FACi = FAC2 / FACl *BB12 (47896)

FACi is replaced by the qoutient of FAC2 and FACi. The same

notes apply as for addition. However by JSRing to $BB8F (47887*

instead* the loading of the FAC2 from memory will be accomplished

prior to doing the division.
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FACI = FAC2 A FACI $BF7B (49613)

FACI is replaced with FAC2 raised to the power of FACi. Same

comments as for addition. By using the $BF78 (49016) entry point, the

routine to load FACI from memory may be executed prior to the

exponentiation routine. The Mempry to FACi routine does not properly

set the sign compare flag however. Also note that when using these

alternate entry points* the same setup of the A-reg and Y-reg must be

performed as per Mem-to-FAC routines before calling the desired

arithmetic routine.

FACI = FACI / 16 *BAFB (47870)

FACi is replaced by FACI / 10.

Compare FACI and Memory $BC5B (48219)

The A-reg is set depending on the result of the compare between

FACi and some floating point number in a specified memory location.

If they are equal, the result is 0; if they are not equal the result

is $FF (255). The address of the start of the memory location is in

format-i.

FACI = ABS ( FACI) IBC58 (48216)

The FACi is replaced by the absolute value of FACI.

FACI » INT ( FACI) $BCCC (48332)

The FACi is replaced by the integer portion of FACi.

FACI = SGN ( FACI) IBC39 (48185)

The FACi is replaced by the value 0 if it was a zero* by 1 if it

was greater than zero and by -i if it was less than zero.

FACI = SQR ( FACI) IBF71 (49069)

The FACi is replaced by the square root of FACi.

FACI = EXP( FACI) *BFBD (49133)

The FACi is replaced by the value computed by raising e of

natural logarithm to the power of FACI.

FACI = COS ( FACI) $B264 (57956)

The FACI is replaced by the Cosine of FACI expressed in radians.
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FACi = SIN ( FACI) $B26B (57963)

The FACl is replaced by the Sine of FACi expressed in radians.

FACl = TAN ( FACl) IE2B7 (58039)

The FACl is replaced by the tangent of FACi expressed in radians.

FACI = ATN ( FACI) $B3eD (58125)

The FACi is replaced by the arctangent of FACi expressed in

radians.

Input/Output routines

Most of the I/O routines are presented in the PRG but there are

two more presented here which do not appear there.

Input into BASIC buffer $A566 (42336)

The 88 byte BASIC input buffer starting at $0200 (512) is

filled with characters from the Keyboard. A CReturn3 terminates the

input and a $00 signifies the end of the message in the buffer.

Output string to screen $AB1B (43806)

The starting address of a string of ASCII characters to be

printed on the screen is set in format-i. The string must be

terminated by a $00.
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Appendix A

Mode 1 2 3 4 5 6 7 8 918111213

ADC

AND

ASL x

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

1NX

INY

JMP

JSR

LDA

LDX

LDY

LSR x

NOP

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

a

X
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Mode 1 2 3 4 5 6 7 8 9 19 11 12 13

ORA

PHA

PHP

PLA

PLP

ROL x

ROR x

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Modes:

1 -

2 -

3 -

4 —

5 -

6 -

X X

X

X

X X

X

X

X

X

X

X

X

X

X

Accumulator

Immediate

Zero page

Zero page,X

Zero page,Y

Absolute

X

7

8

9

10

11

12

13

X

X

X

X

X

X

X

-

-

-

-

-

-

-

X X

X

X

X X

X X

Absolute,X

Absolute,Y

Implied

Relative

(Indirect,

(Indirect)

(Indirect)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X)

X X

X X

X X
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Appendix B

DECIMAL HEX ASCII SCREEN BASIC 6582 DECINAL BINARY HEX

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

cap pet

cur down

pevepse

cup hone

delete

cup right

a

A

B

C

D

E

F

6

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

U

X

Y

Z

[

\

3

t

end-line BRK

0RAU,X>

ORA 2

ASL 2

PHP

ORA »

ASL A

ORA

ASL

BPL

ORA(1),Y

ORAZ,X

ASL Z,X

CLC

ORAY

ORAX

ASLX

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0001

0088

8801

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00

01

02

03

04

05

06

07

08

09

8A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF
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DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL BIWRY HEX

32

33

34

35

36

37

38

39

46

41

42

43

44

45

46

47

48

49

59

51

52

53

54

55

56

57

58

59

68

61

62

63

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

38

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

space

i

•

ft

*

7.

&
*

(

)

-

/

e

i

2

3

4

5

6

7

8

9

:

j

<

>

?

space

i

a

ft

%

V.

&
'

(

)

*

-

/

e

l

2

3

4

5

6

7

8

9

:

;

<

>

space

i

a

ft

$

'A

&
0

)

♦

f

-

/

e

i

2

3

4

5

6

7

8

9

:

i

<

>

JSR

ANDU,X)

BIT 2

#W 2

ROL 2

PLr

AND #

ROL A

BIT

AND

ROL

BMI

#M!),Y

m\> 2fx

ROL 2,X

SEC

MDY

CLI

ANDX

ROLX

32

33

34

35

36

37

38

39

4e

41

42

43

44

45

46

47

48

49

58

51

52

53

54

55

56

57

58

59

60

61

62

63

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeie

eeii

een

een

eeu

een

een

een

een

een

een

een

een

een

een

een

een

eeee

eeei

eeie

een

eiee

eiei

ene

8111

leee

leei

1818

1011

nee

1101

me

mi

eeee

eeei

eeie

een

eiee

eiei

ene

8111

leee

leei

1816

1811

nee

1181

1118

nn

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F
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DECIMAL HEX ASCII SCREEN BASIC 6592 DECIML BINARY HEX

64

65

66

61

68

69

78

71

11

73

74

75

76

77

78

79

88

81

82

83

84

85

86

87

88

89

98

91

92

93

94

95

48

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

58

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

A

B

C

D

E

F

6

H

I

J

K

L

H

N

0

P

Q

R

S

T

U

V

U

X

Y

2

B

(9
m
B

B
B
□
D
a

Q
eg
□
□

s
0

□

□

m

□
H
D
a

IS
D
®

an

ffl

E

CD

H

A

B

c

D

E

F

6

H

I

J

K

L

N

N

0

P

Q

R

S

T

U

V

U

X

Y

Z

RTI

EOR(I,X)

EORZ

LSRZ

m

EOR #

LSRA

JNP

EOR

LSR

eve

EOR(I),Y

EOR 2,X

LSR'Z,X

CLI

EORY

EORX

LSRX

64

65

66

61

68

69

78

71

72

73

74

75

76

77

78

79

88

81

82

83

84

85

86

87

88

89

98

91

92

93

94

95

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8188

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8181

8888

8881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1198

1181

1118

1111

8899

9881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1188

1181

1118

1111

48

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

58

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F
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DECIMAL HEX ASCII SCREEN BASIC 4582 DEC1ML BINARY HEX

n
B

n
□
D
■
a
B

B
□

a
B
H

□

B
H
H

m
c
c

a
a
n

u
a
E

a
E3
E3
S

96

97

98

99

108

181

182

183

184

185

186

187

188

189

118

111

112

113

114

115

116

117

118

119

128

121

122

123

124

125

126

127

68

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

78

71

72

73

74

75

It

77

78

79

7A

7B

7C

7D

7E

7F

RTS

ADC(I,X)

ADC 2

RCR2

PLA

ADC #

RCRA

JMPU)

ADC

ROR

BUS

ADC(I),Y

ADC 2,X

ROR 2,X

SEI

ADCY

ADCX

RORX

96

97

98

99

188

181

182

183

184

185

186

187

188

189

118

HI

112

113

114

115

116

117

118

119

128

121

122

123

124

125

126

127

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8118

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8111

8888

8881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1188

1181

1118

1111

8888

8881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1188

1181

1118

1111

68

61

62

63

64

65

66

61

68

69

6A

6B

6C

6D

6E

6F

78

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F
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DECIrtiL HEX ASCII SCREEN BASIC 6582 DECIMAL BIMRY HEX

128

129

138

131

132

133

134

135

m

137

138

139

148

143

142

143

144

145

146

147

148

149

158

151

152

153

154

155

156

157

158

159

88

81

82

83

84

85

86

87

88

89

8A

88

8C

8D

8E

8F

98

91 cur up

92 rvs oH

93 dear

94 insert

95

96

97

98

99

9A

9B

9C

9D cur )ti\

. 9E

9F

r-OEND

r-A FOR

p-BNEXT

r-C DATA

p-D INPUT »

p-E INPUT

p-F DIM

p-G READ

p-H LET

p-I GOTO

r-J RUN

p-K IF

p-L RESTORE

r-ff 60SUB

p-N RETURN

p-0 REM

p-P STOP

p-0 ON

p-R WAIT

p-S LOAD

p-T SAVE

r-\i VERIR

p-V DEF

p-W POKE

p-X PRINT #

p-Y PRINT

p-Z CONT

r-[ LIST

p-\ CLR

r-J CMD

r-T SYS

r-%- OPEN

STA<I,X)

STY 2

STA2

STX 2

DEY

TXA

STY

STA

STX

BCC

STA (I),Y

STY Z,X

STA Z,X

STX Z,Y

TYA

STAY

TXS

STAX

128

129

138

131

132

133

134

135

136

137

138

139

148

141

142

143

144

145

146

147

148

149

158

151

152

153

154

155

156

157

158

159

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1888

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

1881

8888

8881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1188

1181

1118

1111

8888

8881

8818

8811

8188

8181

8118

8111

1888

1881

1818

1811

1188

1181

1118

1111

88

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

98

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F
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DECIMAL HEX ASCII

168

161

162

163

164

165

166

167

168

169

178

171

172

173

174

175

176

177

178

17?

188

181

182

183

184

185

186

187

188

18?

1?8

!?!

A8

Al

A2

A3

A4

A5

A6

A7

A8

A?

M

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B?

BA

BB

BC

BD

BE

BF

p-!

p-"

p-«

p-$

p-'/.

p-&

r-'

p-<

p-)

p-*

p-*

r-i

p-(

r-/

p-8

r-l

p-2

p-3

p-4

p-5

r-6

p-7

p-8

p-?

p-:

p-5

r-

p-=

p-

P-?

BASIC

CLOSE

6ET

NEW

TA6<

TO

FN

SPC<

THEN

NOT

STEP

4

-

#

/

AND

OR

s

SGN

INT

ABS

HSR

FRE

POS

SQR

RND

L06

EXP

COS

SIN

6582

LDY #

LDA<I,X)

LDX #

LDY 2

LDA 2

LDX 2

TAY

LDA ft

TAX

LDY

LDA

LDX

BCS

LDA<I),Y

LDY 2,X

LDA 2,X

LDX 2,Y

CLM

LDA Y

TSX

LDYX

LDAX

LDXY

DECIMAL

168

161

162

163

164

165

166

167

168

16?

178

171

172

173

174

175

176

177

178

17?

188

181

182

183

184

185

186

187

188

18?

190

1?1

BIftiRY

1818 8888

1818 8881

1818 8818

1818 8811

1818 8188

1818 8181

1818 8118

1818 8111

1818 1888

1818 1881

1818 1818

1818 1811

1818 1188

1818 1181

1818 1118

1818 1111

1811 8888

1811 8881

1811 8818

1811 8811

1811 8188

1811 8181

1811 8118

1811 8111

1811 1888

1811 1881

1811 1818

1811 1811

1811 1188

1811 1181

1811 1118

1811 1111

HEX

A8

Al

A2

A3

A4

A5

A6

A7

A8

A?

AA

AB

AC

AD

AE

AF

B8

Bl

B2

B3

B4

B5

B6

B7

B8

B?

BA

BB

BC

BD

BE

BF
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DECIML HEX ASCII SCREEN BASIC 6582 DECIML BINARY HEX

TAN CPY « 192 1188 8888 C8

ATN CHP(IfX) 193 1188 8881 Cl

PEEK 194 1188 8818 C2

LEN 195 1188 8811 C3

STR* CPY 2 196 1188 8188 C4

ML CMP 2 197 1188 8181 C5

ASC DEC 2 198 1188 8118 C6

CHR$ 199 1188 8111 C7

LEFT! INY 288 1188 1888 C8

RIGHTS CMP ft 281 1188 1881 C9

MID* DEX 282 1188 1818 CA

283 1188 1811 CB

CYP 284 1188 1188 CC

CMP 285 1188 1181 CD

DEC 286 1188 1118 CE

287 1188 1111 CF

BNE 288 1181 8888 D8

CMPU),Y 289 1181 8881 Dl

218 1181 8818 D2

211 1181 8811 D3

212 1181 8188 D4

CMP Z.X 213 1181 8181 D5

DEC Z,X 214 1181 8118 l>6

215 1181 8111 D7

CLD 216 1181 1888 D8

CMP Y 217 1181 1881 D9

218 1181 1818 DA

219 1181 1811 DB

228 1181 1188 DC

221 1181 1181 DD

DEC X 222 1181 1118 DE

223 1181 1111 DF

192

193

194

195

196

197

198

199

288

281

282

283

284

285

286

287

288

289

218

211

212

213

214

235

216

217

218

219

228

221

222

223

C8

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

D8

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF
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DECIML HEX ASCH SCREB4 BASIC 6562 DECIMAL BINARY HEX

CPX « 224 1118 8880 E8

sbc u,x) 225 me eeei ei

226 me eeie E2

227 me een E3

cpx z 228 me eiee E4

sbc z 229 me eiei es

INC Z 238 me 8116 E6

231 me em e?

inx 232 me leee E8

sbc # 233 me leei E9

NOP 234 1116 1810 EA

235 me 1811 EB

CPX 236 me 1100 EC

SBC 237 me 1181 ED

inc 238 me me ee

239 me mi ef

BEQ 246 1111 8000 F8

SBC <I),Y 241 1111 8681 Fl

242 mi eeie F2

243 1111 8811 F3

244 1111 8188 F4

SBC Z,X 245 1111 8181 F5

INC ZfX 246 1111 8118 F6

247 1111 8111 F7

SED 248 1111 1866 F8

SBC Y 249 1111 1881 F9

258 1111 1818 FA

251 1111 1811 FB

252 1111 1188 FC

SBCX 253 1111 1181 FD

INCX 254 1111 1118 FE

255 1111 1111 FF

224

225

226

227

228

229

238

231

232

233

234

235

236

237

238

239

246

241

242

243

244

245

246

247

248

249

258

251

252

253

254

255

E6

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F6

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF



Inside The Commodore 64 Page C-i

—S±a.r± Cartridges

The Commodore 64 has a feature which allows a program in

ROM starting at $8000 (32768) to sieze control of the machine at

power-up and RESET times without any further intervention

required on the part of the operator.

At power-up time one of the very first things the

operating system does is check for a five character sequence

starting at location $8004. If it finds $C3,$C2,$CD,$38,$30 it

will automatically jump to the address it found at $8000,$800i.

A second address is stored in $8002**8003. This is the address

of the [RESTORED key processing routine.

To create your own cartridges you must encode the first 9

bytes as described above. It will be necessary to burn a PROM

(programmable read only memory) and install it on an appropriate

card for complete auto-start capability. The Programmer's

Reference Guide has complete definition of the card connector

specifications. Prom programmers are available from a variety of

sources. Check the magazine ads.
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Commodore 64 Memory Map

Hex Decimal Function

On-chip data-direction register

On-chip I/O Port

Unused

Float->integer

Integer->float

Search char ":" or endline

Scan btwn quotes flag - 00 as delimeter

Column pos of last Tab

Verify flag (0=Load/i=Verify)

Basic input buffer pointer/ttsubscripts

DIM flag

Variable flag - type:FF=string - 00=numeric

Integer flag :80=integer - 00=floating pt

DATA scan flag/LIST quote flag/memory flag

Subscript flag;FNx flag

input / read (0=input - 64=get - i52=read

ATN sign flag:comparison evaluation flag

Current I/O device for prompt suppress

Basic integer adr.(for SYS - GOTO etc)

Temporary string descriptor stack pointer

Last temporary string vector

Stack of descriptors for temporary strings

Pointer for number transfer

Misc number pointer

Prodct area for mult

Pointer to start of Basic

Pointer to end of prog.start of variables

Pointer to end of variables start of arrays

Pointer to end of arrays

Pointer to bottom of strng spce (coming dwn)

Pointer to top of active strings

Pointer to end of memory

Current Basic line number

Prev BASIC line num

Previous BASIC statement <for CONT)

0000

0001

0002

0003

0005

9007

0008

0009

000A

808B

000C

008D

000E

080F

9010

0011

0012

0013

0014

0016

0017

001?

8022

8824

0026

802B

002D

002F

0031

0833

0835

8037

003?

883B

083D

0

1

2

3-4

5-6

7

8

?

18

11

12

13

14

15

16

17

18

1?

20-21

22

23-24

25-33

34-35

36-37

38-42

43-44

45-46

47-48

4?-50

51-52

53-54

55-56

57-58

5?-68

61-62
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Hex

883F

8641

8043

0045

0047

0049

004B

084D

004E

0050

0052

0053

0054

0057

0061

0067

0068

006F

8070

0071

0073

008B

0090

0091

0892

0093

0094

0095

ZZ96

0097

0098

0099

009^

809B

009C

009D

009E

Decimal

63-64

65-66

67-68

69-70

71-72

73-74

75-76

77

78-79

80-81

82

83

84-86

87-96

97-102

103

104

105-118

111

112

113-114

115-138

139-143

144

145

146

147

148

149

156

151

152

153

ib4

155

156

157

158

Function

Line number - current DATA line

Pointer to current DATA item

Input vector

Current variable name

Current variable address

Variable pointer -for FOR/NEXT

Y save/new op save/curr op pointer

Special mask -for curr oprtrjComparison symbol

Misc. work areajfunction def pointer hi-lo

Work areajpointer to strng descrptn

Length of above string

Constant used by garbage collect - 3 or 7

Jump vector for functions

Misc. numerical storage area

FAC#i

Series evaluation constant pointer

FAC#i high ord propogation

Accumulator #2

Sign comparison - FAC1 vs FAC2

Low order rounding byte for Acc#i

Cassette buffer length/series pointer

Subrtn:Get Basic char;7A - 7B=pointer(CHARGOT)

RND storage and work area

Status ST

Stop/RVS key flag

Timing constant for tape

Load or verify flag L=0/V=i

Serial output/deferred char flag

Serial deferred character

Tape EOT recvd

Register save area

# open files

Input device# - normally 0

Output CMD device - normally 3

Tape character parity

Cassette dipole switch

OS message flag - direct=$S0 - run=0

Cassette error pass 1
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Hex Decimal Function

009F 15? Cassette error pass 2

88A8 169-162 Jiffy clock (HMD

06A3 163 Serial bit count

00A4 164 Cycle counter for serial I/O

00A5 165 Cntdwn for tape write

80A6 166 Cassette buffer pointer

00A7 i 67 RS-232 input bit storage/Tape shrtcnt

80A8 168 RS-232 bit cnt in/ Tape read error

00A? 16? RS-232 flag start bit ck/Tape rd bit err

00AA 179 RS-232 byte buffer/Tape rd mode

08AB 1 71 RS-232 parity storage/Tape chksum

00AC 172-173 Tape start addr/tape buffer / scrolling

08AE 174-175 Tape end addr/end of current program

00B0 176-177 Tape timing constants

00B2 178-17? Addr of tape buffer

00B4 188 RS-232 transmitter bit cnt out

80B5 181 RS-232 transmitter nxt bit to be sent

00B6 182 RS-232 transmitter byte buffer

80B7 183 Length of current file name string

00B8 184 Current logical file number

00B? 185 Curr secondary addr - or R/W command

00BA 186 Curr device number

80BB 187-188 Addr of curr file name string

80BD 189 RS-232 write shift word/Receive input char

08BE 198 #blocks remaining to read/write

00BF 191 Serial word buffer

00C0 192 Cass motor interlock

00 C1 193-194 Tape start addr(load)

88C3 195-196 KERNAL setup pointer

08C5 197 Matrix co-ordinates of key pressed

00C6 198 #of characters in keybrd buffer

00C7 199 Reverse mode flag - 0=off - 13=on

88C8 206 End of line for input pointer

00C9 281-202 Cursor log(row - column)

00CB 203 Print shifted Chars flag

00CC 204 Cursor blink enabled flag - 0=on - i=off

08 CD 285 Delay before cursor blinks

00CE 206 Character under cursor
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Hex

88CF

80D0

08D1

08D3

00D4

00D5

00D6

08D7

80D8

00D?

00F2

80F3

08F5

00F7

00F9

80FB

80FF

0100

0100

0100

0200

025?

0263

026D

0277

0281

0283

0285

0286

0287

0288

028?

028A

028B

028C

628D

028E

028F

Decimal

207

208

20?-210

211

212

213

214

215

216

217-242

242

243-244

245-246

247-248

24?-250

251-254

255

256-266

256-318

256-511

512-680

601-618

611-620

621-630

631-640

641-642

643-644

645

646

647

648

64?

650

651

652

653

654

655-656

Function

Cursor on/off blink -flag

Input from screen/keybrd

Screen addr(row)pointer(screen memory)

Position of cursor on curr line

Quote mode flag (0=off / i=on)

Line length for screen

Current screen line number

ASCII value of last key press

# of inserts outstanding

Screen line link table

Screen row marker

Screen color ptr

Keyscan table indirect

Pointer to RS-232 receive buffer addr

Pointer tc RS-232 transmitter buffer addr

Free zero page locations

BASIC storage

Floating to ASCII work area

Tape error log

Processor stack area

Basic input buffer

Logical file number table

Device number table

Secondary addr of R/W cmd - table

Keyboard buffer

Start of memory

Top of memory

Serial timeout flag

Active color code

Background color under cursor

Top of Screen page

Keyboard buffer max length

Repeat flag - 0=cursor only - 128=all keys

Delay before repeat occurs

Delay btwn repeats

Shift flag byte

Last shift pattern

Indirect for keyboard table setup
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8291

0292

0293

0294

6295

0297

0298

0299

829B

029C

029D

029E

029F

02A1

8300

0302

8304

0306

0383

030A

030C

0300

038E

030F

0314

0316

0318

831A

031C

031E

0320

0322

8324

0326

0328

032A

032C

032E

8338

0332

657

658

659

662

661-662

663

664

665-666

66?

668

669

67Q

671-672

673-767

768-769

770-771

772-773

774-775

776-777

778-779

780

781

782

783

738-789

790-791

792-793

794-795

796-797

798-799

800-801

882-803

884-805

806-807

888-809

810-811

812-813

814-815

816-817

818-819

Shift mode switch - 0=enabled - 128=locKed

Auto scroll dwn flag(0=on - <>0=off)

6551 RS232 control register image

6551 RS232 Command register image

Non standard (bittime/2-iee)

6551 RS-232 status register image

Number of bits to send

Baud rate full bit time

RS-232 end of receiver pointer

RS-232 start receive buffer

RS-232 start transmit output buf

RS-232 end of transmit buffer

Holds IRQ during tape operation

Program indirects

Indirect error routine

Indirect warm start

Indirect tokenize BASIC

Indirect token print

Indirect new token

Indirect symbol evaluation

Temporary storage during SYS of A-reg

Temporary storage during SYS of X-reg

Temporary storage during SYS of Y-reg

Temporary storage during SYS of P-reg

IRQ vector

BRK vector

NMI vector

Open logical file vector (OPEN)

Close logical file vector (CLOSE)

Set input device vector (CHKIN)

Set output device vector (CHKOUT)

Reset default I/O (CLRCHN)

Input from device (CHRIN)

Output to device vector (CHROUT)

Test STOP key vector (STOP)

Get from keyboard vector (GETIN)

Close all files vector (CLALL)

User defined vector

Load from device vector (LOAD)

Save to device vector (SAVE)
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Hex

8334

833C

83FC

0408

0400

07F8

0800

A000

A000

A646

A074

A092

A193

A38A

A3B8

A3FB

A408

A435

A474

A483

A533

A560

A57C

A613

A642

A660

A68E

A69C

A742

A7ED

A81D

A82C

A857

A871

A883

A8A0

A8D2

A8EB

Decimal

820-827

828-101?

1020-1023

1024-2047

1024-2023

2040-2047

2048-40959

40960-49151

40960

41630

41076

41106

41363

41866

41912

41979

41992

42037

42100

42110

42291

42336

42364

42515

42562

42592

42638

42652

42818

42989

43937

43052

43095

43121

43139

43168

43218

43243

Function

Unused ,

Cassette buffer

Unused

1024 byte screen memory area

25 lines by 40 columns video matrix

Sprite data pointers

Normal user Basic area

BASIC ROM or 8K of RAM

Keyword action addresses

Function action addresses

Operator action addresses

Keyword Table

Error messages

FOR - GOSUB search stack

Open memory space

Test stack depth

Check available memory

Send error message

Print READY.

New BASIC line processing

BASIC line chaining

Receive line from keyboard

Tokenize BASIC line

Search for line number

Perform NEW

Perform CLR

Reset BASIC execution to start-of-program

Perform LIST

Perform FOR

Execute BASIC statement

Perform RESTORE

Perform STOP and END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN

Perform DATA
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Hex

A906

A999

A928

A93B

A94B

A96B

A9A5

AA88

AA86

AA9A

ABIE

AB3B

AB4D

AB7B

ABAS

ABBF

ABF9

AC86

ACFC

AD1E

AD78

AD9E

AEA8

AEF1

AEF7

AEFA

AEFD

AF08

AF14

AFA7

AFE6

AFE9

B816

B07E

B08B

Bl 13

BUD

B194

Decimal

43278

43273

43304

43323

43339

43371

43429

43648

43654

43674

43806

43835

43853

43899

43941

43967

44025

44038

44284

44318

44408

44446

44712

44785

44791

44794

44797

44808

44820

44967

45030

45033

45078

45182

45195

45343

45341

45460

Function

Scan for next statement

Scan for next line

Perform IF

Perform REM

Perform ON

Get integer from text

Perform LET

Perform PRINT*

Perform CMD

Perform PRINT

Print string from any memory

Print format character

Process bad input

Perform GET

Perform INPUT#

Perform INPUT

Prompt & input

Perform READ

Input error messages

Perform NEXT

Type match check

Evaluate expression

PI in floating point

Evaluate within parenthesis

ChecK for")"

Check for'T

Check for " - M

Syntax error

Search for variable name

Set up FN references

Perform OR

Perform AND

Comparison routine

Perform DIM

Locate variable

Check for alpha ASCII

Create new variable

Array pointer routine
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Hex

B1A5

B1BF

B1D1

B34C

B37D

B391

B39E

B3A6

B3B3

B3E1

B3F4

B465

B475

B487

B4F4

B526

B5BD

B686

B63D

B67A

B6A3

B6DB

B4EC

B788

B72C

B737

B761

B77C

B782

B78B

B79B

B7AD

B7EB

B7F7

B80D

B824

B82D

B84?

Decimal

45477

45583

45521

45988

45949

45949

45982

45998

46883

46849

46868

46181

46197

46215

46324

46374

46525

46598

46653

46714

46755

46811

46828

46848

46892

46983

46945

46972

46978

46987

47883

47821

47883

47895

47117

47148

47149

47177

Function

32768 in floating point

FAC1 to integer

Find or Create Array

Compute subscript size

Perform FRE

Integer to FACi

Perform POS

Check for DIRECT mode

Perform DEF

Check FN syntax

Evaluate FN

Perform STR$

Calculate string vector

Set up string

Build string vector

Collect garbage (make room for string)

Check string collection eligibility

Collect string

Concatenate string

Build string to memory

Discard unwanted string

Clean the descriptor stack

Perform CHR$

Perform LEFT*

Perform RIGHTS

Perform MID$

Pull string parameters from stack

Perform LEN

Exit string mode

Perform ASC

Input byte parameter

Perform VAL

Get POKE/WAIT parameters

FACi to integer

Perform PEEK

Perform POKE

Perform WAIT

Add 6.5 to FACi
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Hex

B858

B86A

B947

B97E

B983

B9BC

B9EA

BA28

BA30

BA59

BA8C

BAB7

BAD4

BAE2

BAF9

BAFE

BB67

BB0F

BB12

BBA2

BBD7

BBFC

BC9F

BC1B

BC2B

BC39

BC58

BC5B

BC9B

BCCC

BCF3

BD7E

BDB3

BDDD

BF11

BF71

BF78

BFB4

Decimal

47184

47218

47431

47486

47491

47548

47594

47656

47664

47785

47756

47799

47828

47842

47865

47878

47879

47887

47898

48834

48087

48124

48143

48155

48171

48185

48216

48219

48283

48332

48371

48510

48563

48685

48913

49809

49016

49076

Function

Perform subtraction

Perform addition

Complement FACi

Over-flow

Single byte multiply

Floating point constants

Perform LOG

Multiply FACi * memory

Multiply FAC2 * FACi

Multiply a bit

Memory to FAC2

Adjust FACi/FAC2

Underflow/overflow

Multiply FACi by 10

Constant 18

Divide by 10

Divide FAC2 / memory

Divide memory / FACi

Divide FAC2 / FACi

Memory to FACi

FACi to memory

FAC2 to FACi

FACi to FAC2

Round off FACi

Get sign

Perform SGN

Perform ABS

Compare FACi to memory

FACi to integer

Perform INT

ASCII to FACI

Get new ASCII digit

Constants

FACi to ASCII

More constants

Perform SQR

Perform exponentiation

Perform negation
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Hex

BFBF

BFED

C980

D900

D060

D081

D002

D803

D004

D065

D006

D807

D008

D009

D00A

D00B

D00C

D06D

D00E

D00F

D010

D011

D012

D013

D014

D815

D016

D017

D018

D019

D01A

D01B

D01C

D01D

O01E

D01F

D020

D021

Decimal

49087

49133

49152-53247

53248-57343

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

53271

53272

53273

53274

53275

53276

53277

53278

53279

53280

53281

Function

More constants yet

Perform EXP

RAM available -for machine language progs

I/O & Color RAM/Char Gnratr ROM/4K RAM

Sprite 0 X Pos

Sprite 0 Y Pos

Sprite 1 X Pos

Sprite 1 Y Pos

Sprite 2 X Pos

Sprite 2 Y Pos

Sprite 3 X Pos

Sprite 3 Y Pos

Sprite 4 X Pos

Sprite 4 Y Pos

Sprite 5 X Pos

Sprite 5 Y Pos

Sprite 6 X Pos

Sprite 6 Y Pos

Sprite 7 X Pos

Sprite 7 Y Pos

Sprites 0-7 Pos (msb of X coord.)

VIC Control Register

Read/Write Raster Value for Compare IRQ

Light-Pen Latch X Pos

Light-Pen Latch Y Pos

Sprite Display Enable:1=Enable

VIC Control Register

Sprites 0-7 Expand 2X Vertical (Y)

VIC Memory Control Register

VIC Interrupt Flag Reg.(Bit=i: IRQ Occurred)

IRQ Mask Reg.^Interrupt Enabled

Sprite to Bkgrnd Display Priority: 1= Sprite

Sprites 0-7 Multi-Color Mode Select

Sprites 0-7 Expand 2X Horizontal

Sprite to Sprite Collision Detect

Sprite to Background Collision Detect

Border Color

Background Color 0
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Hex Decimal Function

D822 53282 Background Color i

D823 53283 Background Color 2

D024 53284 Background Color 3

D825 53285 Sprite Multi-Color Register 0

D826 53286 Sprite Multi-Color Register i

D027 53287 Sprite 0 Color

D628 53288 Sprite i Color

D02? 53289 Sprite 2 Color

D02A 53296 Sprite 3 Color

D02B 53291 Sprite 4 Color

D02C 53292 Sprite 5 Color

D02D 53293 Sprite 6 Color

D02E 53294 Sprite 7 Color

D400 54272 Voice l:Frequency Control-Low-Byte

D401 54273 Voice 1:Frequency Control-High-Byte

D402 54274 Voice i:Pulse Waveform Width-Low-Byte

D493 54275 Unused

D404 54276 Voice l:Ctrl Reg. Random Noise l=On

D405 54277 Envelope Gnrtr"l: Attack/Decay Cycle Control
D406 54278 Envelope Gnrtr i:Sust/rel Cycle Control

D407 54279 Voice 2: Frequency Control-Low Byte

D408 54280 Voice 2: Frequency Control-High-Byte

D409 54281 Voice 2: Pulse Waveform Width-Low-Byte

D40A 54282 Unused

D48B 54283 Voice 2: Control Register

D40C 54284 Envelope Gnrtr 2: Attack/Decay Cycle Control

D40D 54285 Envelope Gnrtr 2:Sust/Rel Cycle Control

D40E 54286 Voice 3: Frequency Control-Low-Byte

D40F 54287 Voice 3: Frequency Control-High-Byte

D410 54288 Voice 3: Pulse Waveform Width-Low-Byte

D411 54289 Unused

D412 54290 Voice 3:Ctrl Reg Random Noise: l=On

D413 54291 Envelope Gnrtr 3:Attack/Decay Cycle Ctrl

D414 54292 Envelope Gnrtr 3:Sust/Rel Cycle Control

D415 54293 Filter Cutoff Freq Low-Nybble (Bits 2-0)

D416 54294 Filter Cutoff Freq High-Byte

D417 54295 Filter Resonance Ctrl/ Input Control

D418 54296 Select Filter Mode and Volume
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Hex Decimal Function

D41? 54297 Analog/Digital CvtrGame Paddle i (0-255)

D41A 54298 Analog/Digital Cvtr:Game Paddle 2 (0-255)

D41B 54299 Oscillator 3 Random Number Generator

D41C 54238 Envelope Generator 3 Output

DC88 56328 Data Port A (Kybd,Joy,Paddles,Light-Pen)

DC91 56321 Data Port B (Kybd,Joy,Paddles,Game Port i

DC02 56322 Data Direction Register-Port A (56320)

DC03 56323 Data Direction Register-Port B (56321)

DC04 56324 Timer A: Low-Byte

DC05 56325 Timer A: High-Byte

DC06 56326 Timer B: Low-Byte

DC07 56327 Timer B: High-Byte

DC08 56328 Time-of-Day Clock: i/10 Seconds

DC09 56329 Time-of-Day Clock: Seconds

DC0A 56338 Time-of-Day Clock: Minutes

DC8B 56331 Time-of-Day Clock: Hours + AM/PM Flag (Bit 7)

DCOC 56332 Synchronous Serial 1/0 Data Buffer

DC0D 56333 CIA Intrpt Ctrl Reg (Read IRQs/Write Mask)

DCOE 56334 CIA Control Register A

DCCF 56335 CIA Ctrl Reg B i= alarm, 0=Clock

DD00 56576 Data Port A (Serial Bus,RS-232,Mem Ctrl)

DD01 56577 Data Port B (User Port,RS-232)

DD02 56578 Data Direction Register-Port A

DD03 56579 Data Direction Register-Port B

DD04 56580 Timer A: Low-Byte

DD05 56581 Timer A: High-Byte

DD06 56582 Timer B: Low-Byte i

DD07 56583 Timer B: High-Byte

DD08 56584 Time-of-Day Clock: i/ie Seconds

DD09 56585 Time-of-Day Clock: Seconds

DD0A 56586 Time-of-day Clock: Minutes

DD0B 56587 Time-of-Day Clock: Hours + AM/PM Flag (Bit 7)

DD0C 56588 Synchronous Serial 1/0 Data Buffer

DD0C 56589 CIA Intrp Ctrl Reg (Read NMIs/Write Mask)

DD0E 56590 CIA Ctrl Reg.A TOD Clock Freq i=50Hz»0=60Hz

DD0F 56591 CIA Ctrl Reg B i=Alarm,0=Clock

E000 57344-65535 KERNAL ROM

E043 57411 Series evaluation
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Hex

E03D

E097

E264

E26B

E2B7

E2E9

E30D

E33E

E394

E3A2

E3BF

E45F

E4AD

E505

E56A

E518

E531

E544

E566

E56C

E5A6

E5A8

E5B4

E632

E684

E691

E6B6

E6F7

E701

E716

E87C

E891

E8A1

E8B3

E8CB

E8DA

E8E2

E8E7

Decimal

574

57495

57956

57963

58039

58080

58125

58174

58260

58274

58303

58463

58541

58629

58634

58648

58673

58692

58726

58732

58784

58792

58804

58930

59012

59025

59062

59127

59137

59159

59516

59537

59553

59571

59595

59610

59618

59624

Function

RND constants

Perform RND

Perform COS

Perform SIN

Perform TAN

Constants for trig functions

Perform ATN

Constants for ATN

Initialize RAM vectors

CHRGET for zero page

Initialize BASIC

Messages

Program patch area

Set screen limits

Track cursor location

Initialize I/O

Normalize screen

Clear screen

Home cursor

Set screen pointers

Set I/O defaults

Set vie chip defaults

Input from keyboard

Input from screen

Quote mark test

Set up screen print

Advance cursor

Retreat cursor

Back into previous line

Output to screen

Go to next line

Do 'RETURN'

Check line decrement

Check line increment

Set colour code

Colour code table

Code conversion

Scroll screen
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Hex

E965

E9C8

E9E0

E9F0

E9FF

EA13

EA1C

EA24

EA31

EA87

EB59

EB79

EB91

EC44

EC4F

ED99

ED9C

ED11

ED36

EDB6

EDB9

EDBE

EDC?

EDDD

EDEF

EDFE

EE13

EE85

EE8E

EEB3

EEBB

EF66

EF2E

EF4A

EF59

EF7'E

EFC5

EFCA

Decimal

59749

59848

59872

59888

59903

59923

59932

59940

59953

60039

60249

60281

60305

60484

60495

60681

60684

60689

60726

60848

60857

60862

60871

60893

60911

60926

60947

61661

61070

61167

61115

61190

61230

61258

61273

61316

61383

61386

Function

Open space on screen

Move screen line

Synch colour transfer

Set start-of-line

Clear screen line

Print to screen

Store on screen

Synch colour to char

Interrupt (IRQ)

ChecK keyboard

Set text mode

Keyboard vectors

Keyboard maps

Graphics/text control

Set graphics mode

Send 'talk'

Send 'listen'

Send control char

Send to serial bus

Timeout on serial

Send listen SA

Clear ATN

Send talk SA

Send serial deferred

Send 'untalk'

Send 'unlisten'

Receive -from serial bus

Clock line on

Clock line off

Delay 1 ms

RS232 send (NMD

New RS232 byte send

Error or quit

Compute bit count

RS232 receive (NMD

Setup to receive

Receive parity error

Receive overrun error
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Hex

EFCD

EFD9

EFE1

F817

F04D

F086

F9A4

F0BD

Fi2B

F13E

F14E

F157

F199

F1CB

F1DD

F20E

F250

F291

F30F

F31F

F32F

F333

F34A

F3D5

F40?

F49E

F5AF

F5B8

F5D2

F5DD

F68F

F69B

F6DD

F6E4

F6ED

F6FB

F72C

F76A

Decimal

61389

61392

61489

61463

61517

61574

61604

61629

61739

61758

61774

61783

61849

61899

61917

61966

62032

62097

62223

62239

62255

62259

62282

62421

62473

62622

62895

62904

62930

62941

63119

63131

63197

63204

63227

63227

63276

63338

Function

Receive break error

Receive frame error

File to RS232

Send to RS232 buffer

Input from RS232 buffer

Get from RS232 buffer

Check serial bus idle

Messages

Print if direct

Get..

..from RS232

Input

Get..tape/serial/RS232

Output..

..to tape

Set input device

Set output device

Close

Find file

Set file values

Abort all files

Restore default I/O

Do file opening

Send SA

Open RS232

Load program

'SEARCHING'

Print file name

'LOADING/VERIFYING'

Save program

'SAVING'

Bump dock

Get time

Set time

Action stop key

File Error Messages

Find any tape header

Write tape header
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Hex

F7D8

F7D7

F7EA

F88D

F817

F82E

F838

F841

F864

F875

F8D8

F8E2

F92C

FA68

FD8E

FB97

FBA6

FBC8

FBCD

FC57

FC93

FCB8

FCCA

FCD1

FCDB

FCE2

FD82

FD13

FD52

FD9B

FDA2

FDF9

FE09

FE07

FE18

FE21

FE25

FE34

Decimal

63440

63447

63466

63501

63511

63534

63544

63553

63588

63605

63696

63714

63788

64096

64398

64487

64422

64456

64461

64599

64659

64696

64714

64721

64731

64738

64770

64787

64850

64923

64930

65017

65024

65031

65048

65957

65061

65676

Function

Get buffer address

Set buffer start - end pointers

Find specific header

Bump tape pointer

'PRESS PLAY7

Check cassette status

'PRESS RECORD'

Initiate tape read

Initiate tape write

Common tape read/write

Check tape stop

Set timing

Read bits (IRQ)

Store characters

Reset pointer

New tape character setup

Toggle tape

Data write

Tape write (IRQ)

Leader write (IRQ)

Restore vectors

Set vector

Kill motor

Check read/write pointer

Bump read/write pointer

Powerup entry

Check A-rom

Set kernal

Initialize system constants

IRQ vectors

Initialize I/O regs

Save data name

Save -file details

Get status

Flag ST

Set timeout

Read/set top memory

Read/set bottom o-f memory
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Hex Decimal Function

FE43

FE66

FEBC

FEC2

FF48

FF81

FFFA

65091

65126

65212

65218

65352

65489

65530

NMI interrupt entry

RESET/STOP warm start

Restore & exit

RS232 timing table

Main IRQ entry

Jumbo jump table

Hardware vectors



Inside The Commodore 64 Page E-i

Sample Bit-Mapped plotting

The following programs are an example of a machine language

subroutine* callable by either BASIC or machine language* and a BASIC

program which uses the routine. The machine language program is

designed to turn on individual pixels based on a x and y bit-position

passed from the calling routine. The routine assumes that the x

coordinate of the point to be plotted is stored in 253*254. Location

253 must contain the high-order bit of the number and 254 the low-

order eight bits. The x value may range from 0 to 319. The y-

coordinate must be stored in location 255. The y value may range from

0 to 199. The upper left corner of the screen is considered bit

position 0*0 and the lower right is position 319*199. The carry bit

is used as a mode switch. It is passed to the ML program from BASIC

by setting the low-order bit of location 783. This is the location of

the processor status register when communicating to machine language

programs via a SYS. If the carry bit is set the ML program will set

the specified bit on the screen to the foreground color. If clear*

the color of the bit will be set to the background color. The

BASIC program which calls the plot routine must first call the

initialization routine which will set the screen location* clear the

screen and the color memory. This simple BASIC program plots a

sinusoidal pattern.

The BASIC program:

16 SYS 49323

2e for x = o to iooo step.05:y = iee + 4e * sin <x>

30 XP = X * 30: POKE 254*XP AND 255: POKE 253* XP/256

40 POKE 255*Y: POKE 783*1: SYS 49231: NEXT

The machine language program:
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PLOT SUBROUTINES

BY TOM COURT

LWADR EQU 251

6 HIADR EQU 252

7 CURHX EQU 253

8 CURLX EQU 254

9 CURY EQU 255

10 TEMP EQU 2

11 CHARMEM EQU *E000

12 SCREEN EQU *C400

13 IRQCTRL EQU 56334

14 ROMSWCH EQU 1

15 BANK EQU 56576

16 BITMODE EQU 53265

17 SCRNPOS EQU 53272

18 ;

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 ;

36 STRADR EQU *C000

37 LDA *»0

38 STA +TEMP

39 STA *HIADR

40 LDA 4-CURY

ADDRESS POINTER

X COORDINATE OF PLOT

RANGE <0-319)

Y COORDINATE (0-199)

BIT MAP OF SCREEN

* STRAD ROUTINE *

CONVERT X,Y COORD OF PLOT TO

ADDRESS OF BYTE TO MODIFY IN

BIT-MAPPED CHAR MEMORY

; X-COORD MUST BE STORED IN CURX

5 (9-BIT VALUE GOES IN TWO BYTES)

Y-CpORD MUST BE IN CURY

ON RETURN X-RE6 CONTAINS 0-7

(BYTE WITHIN 8-BYTE BLOCK)

Y-REG CONTAINS BIT POSITION

WITHIN THE BYTE TO MODIFY
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41

42

43

44

45

46

47

48

49

56

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

6?

68

69

70

71

72

73

74

75

76

77

78

7?

80

9

5
■

5

5

AND #*F8 Y=8*INT<Y/8>

TO MULT BY 40:

FIRST MIULT BY 32 (5-BIT SHIFT LE

THEN

THEN

ASL

ROL

ASL

ROL

ASL

ROL

ASL

ROL

ASL

ROL

STA

LDA

AND

ASL

ROL

ASL

ROL

ASL

ROL

CLC

ADC

STA

LDA

ADC

STA

LDA

AND

MULT IT BY 8 <3-BIT LEFT)

ADD THE TWO TOGETHER

A

*HIADR

A

*HIADR

A

+HIADR

A

*HIADR

A

*HIADR

*LWADR

*CURY

tt*F8

A

*TEMP

A

+TEMP

A

♦•TEMP

*LWADR

*LWADR

*TEMP

<-HIADR

<-HIADR

♦-CURLX

#*F8 X=8*INT<X/8>

$POSITION=40*<8*INT<Y/8>*8+INT<X/8>>

5

CLC

ADC

STA

<-LUIADR

<-LWADR
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81

82

83

84

85

86

87

88

89

98

91

92

93

94

95

96

97

98

99

106

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

5

9

5

5

5

5

5

5

DOT

LDA

ADC

ADDR =

ORA

STA

LDA

AND

TAY

LDA

AND

TAX

RTS

DRAW

CARRY

*CURHX

+HIADR

POSITION IN

#>CHARMEM

*HIADR

<-CURY

#7

*CURLX

#7

ENTRY POINT

SET TO:

PLOT (SET) UNPLOT
■

9

; CURX,

5

PHP

JSR

LDA

AND

STA

LDA

AND

STA

PLP

BCC

LDA

ORA

STA

JMP

UNDRAW LDA

EOR

AND

STA

MAP + STRT OF MAP

POS IN BLOCK » <Y AND

BIT POS « <X AND 7)

RETURN TO DOT

<CLEAR)

CURY MUST CONTAIN X,Y COORD

STRADR

IRQCTRL

#*FE

I RQCTRL

*ROMSWCH

tt*FD

*ROMSWCH

UNDRAW

<LWADR),Y

TABL,X

(LWADR),Y

SKPUND

TABL,X

#*FF

<LWADR),Y

<LWADR),Y

GET BIT-MAP ADDR TO 1

TURN OFF IRQ'S

SWITCH OUT THE ROM

TEST CARRY

GET BYTE TO MOD

TURN ON SELECTED DOT

TURN DOT OFF

REVERSE ALL BITS
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121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

13?

140

141

142

143

144

145

146

147

148

14?

150

151

152

153

154

155

156

157

158

15?

160

SKPUND LDA <-ROMSWCH

ORA #2

STA <-ROMSWCH

LDA IRQCTRL

ORA #1

STA IRQCTRL

RTS

5

;COLOR SET ROUTINE

8RING BACK ROM

ENABLE THE IRQ'S

SETS SCREEN COLORS

5 A-AREG MUST HAVE FGRND COLOR

; IN HIGH 4-BITS.

; BKGRND IN LOW-4 BITS.

COLOR LDX #250

LOPCOL DEX

STA SCREEN,X

STA SCREEN*250,X
STA SCREEN+500,X

STA SCREEN*750,X

BNE LOPCOL

RTS

SET COUNT

CLS

CLEARS ENTIRE HIRES SCREEN

LOPOUT

LOPIN

LDA #0

STA <-LWADR

LDX #>CHARMEM

STX *HIADR

LDY #0

DEY

STA (LWADR),Y

BNE LOPIN

INX

BNE LOPOUT

RTS

INIT ROUTINE

GET STARTING PAGE

STORE A 0

CONTINUE TILL DONE
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161 ;

162 ;

163 ;

164 ;

165 ;

166 ;

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181 TABL

TURNS ON THE GRAPHICS MODE,

CLEARS THE SCREEN

SETS FOREGROUUND = WHITE

AND BKGRND = BLACK

LDA BANK+2

ORA #3

STA BANK+2 •

LDA BANK

AND #$FC

STA BANK

LDA BITMODE

ORA #32

STA BITMODE

LDA #$18

STA SCRNPOS

LDA #$10

JSR COLOR

JMP CLS

SET BANK PORT TO OUTPUT

AND THE VIDEO BANK TO 3

SET CHARMEM TO E000-FFFF

AND SCREEN TO $C000

SET COLORS

CLEAR SCREEN AND RETURN

BYT $8040201008040201
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o

Explanation: _

The screen has 25 rows of 40 characters each. Each character ~

has eight rows of eight dots each. The character memory is where the -*

hi-res bit map of the screen resides. There are 8000 bytes of screen q

information contained there. This breaks down to 40 columns * 25 rows

* 8 bytes per character. The first eight bytes of char mem contain Q
the bit map of the upper left square of 64 dots arranged in an eight

by eight array. There are therefore 40 * 8 or 320 bytes to map the

first eight rows of dots. The second 320 bytes in character memory

reference the second row of characters ( 8 rows of actual dots).

So, block #0 is the pattern for the upper left eight by eight block of

dots and block #i is the block to the right of that and block #40 is

the pattern of dots for the block below it and so forth till block

#1000 which describes which pixels will be illuminated in the bottom

right corner of the screen.

The above machine language subroutine computes which block

corresponds to any given X and Y dot coordinate. It also computes

which byte within the eight-byte block holds the dot in question and

which bit position within that byte to turn on or off.

The Y-coordinate represents how far from the top of the screen

the dot is located. If it is in the range of 0-7, the dot is in the

first row of characters. If is is 8-15, it is in the second row, etc.

So to find the row Y must be divided by 8, discarding any remainder.

Each row of characters contains 40 blocks across the screen and each

block contains eight bytes of data. So, for every row, the position

within the table increases by 8 times 40 or 200.

The address of the appropriate byte of the table to modify is

built in the two-byte field labeled LWADR and HIADR. STADR is the

routine which computes the address of the block to modify. It also

returns with the relative byte within the block in the X-reg and the

bit within that byte to modify in the Y-reg. The only thing

remaining is to get the actual bit within the byte and either turn it

on or off as indicated by the mode switch in location 0. This is done

in the mainline of the DOT routine.
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Appendix F — Data

Bits. Binary digits. Its actually a contradiction in terms.

Binary means it can have two possible values. Digit implies ten.

The bit is the most basic unit of information. It is the

foundation of all other more complex information formats. It is the

only kind of information which may be stored in a "digital" computer.

A bit may have the value of either one or zero. A byte is a grouping

of eight bits. The 6510 is called an eight-bit microprocessor. This

is because it processes and stores data eight bits at a time. It is

more convenient for the purpose of understanding the nature of

computer data to break the eight bits into two four bit sections,

called nybbles.

There are exactly sixteen unique four-bit combinations of ones

and zeros such that no two arrangements are alike. There is a common

shorthand notation for identifying these sixteen patterns. It goes

like this:

8421 8421 8421 8421

8688=8 8188=4 1888=8 1188=C

8881=1 8181=5 1881=9 1181=D

8818=2 8118=6 1818=A 1118=E

8811=3 8111=7 1811=B 1111=F

It's a convenient shorthand system because it is easy to

remember. It simply numbers the patterns from 0 to 15, except* in

keeping with the idea of using a one character code for each pattern*

the numbers 18-15 are called A-F. So, pattern 12 is called "C" and is"

is "F", etc. It's got another advantage too. The shorthand label

system has an order which makes it easy to remember. If the left-most

bit position may be considered to have the value of 8; and the next

position, the value 4; and the next, 2\ and the last, one: then the

bit patterns may be converted to their labels by adding the bit values

of the individual bit positions. For example: ieie has a 1 in the 8

position, a 0 in the 4 position, a i in the 2 position, and a 0 in the

i position. So its label is "A" because 8 + 2 = 10 and "A" is the

code for 10. Likewise, 0110 is labeled "6" because it has no 8, one
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4, one 2 and no 1.

The leftmost bit position is called the "most-significant" bit

because it has the greatest bit value. It is also called the "high-

order" bit. Likewise* the rightmost bit is the "least significant" or

"low-order bit".

Note that all the odd numbers have a one in the rightmost bit

position. All the even numbers* a zero.

You can now see that the shorthand notation for identifying a

four bit data field is very logical and it is not hard to convert back

and forth between the bit patterns and the pattern code. This is

important because as machine language programmers! we have to end up

working a lot with bits. This is because the 6516 and all of the

memory devices store and work with all data coded as bits.

The addresses of where data is located within a memory device

is likewise represented and transferred on the address bus in bits.

Now, since data is stored and retrieved to and from the memory

devices eight bits at a time (called a byte of data), it takes two

shorthand codes to describe the bit content of the data. A byte of

data which has a bit structure of 1100 0168 would be identified as

having the two-character code of "C4". The bit structure of the code

for the letter "A" would be "41" because the bit pattern assigned to

"A" in the ASCII coding scheme is 0166 6661. It's helpful to sit with

a pencil and paper and write out bit patterns and figure out what

their codes are. You should also start with the codes 6-F and convert

back to bit patterns.

That there are 256 ways to represent eight bits is obvious

from the fact that there are sixteen possible first characters of the

two character code which identifies an eight-bit pattern and sixteen

possible second characters. And 16 times 16 = 256. If we wanted a

byte of data to represent a numeric value instead of an ASCII coded

character, we can see that it could represent any value between 6 and

255. The 6516 does, in fact* sometimes treat data as if it is numeric

instead of character data. Using the same two-character code to

identify an 8 bit pattern, we can convert between the numeric value

and the two-character code quite easily. For example, to convert from

"A6" to its numeric value, we would multiply 16 times 16 ("A" - 16 )

and add 6 to give 166. Likewise, to convert "4F" to numeric we would

multiply 4 times 16 and add 15 ("F" = 15 ) to give 79. It's easy to

see that the maximum value of "FF" = 15 times 16, (246) plus 15 to

give 255. Of course, the minimum would be "66" which is (6 times 16)
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plus 0.

• How about going the other way? If we want to create the bit

pattern for some number in the range of 0 - 255* we only have to

divide the number by 16 to get the first character of the code

<remember to translate 10 thru 15 to A thru F>. Then the remainder of

the division is the second character. Now to get the bit pattern we

Just look it up in the little bit pattern table. Put the first four-

bit pattern together with the second and you have an eight bit pattern

which represents the numeric value. Not hard at all. Lets try it

with a few numbers. Take the number 169. How many times does 16 go

into 169? Right. And how is that represented in our single character

code? As the letter "A". The remainder from dividing 169 by 16 is 9.

So our character-code representation of 169 is "A9" and if we go to

the bit pattern table* we will see that the bit patterns are 1010

1001.

It is a valuable exercise to practice converting bit patterns

to character-codes and from character-codes to decimal and from

decimal to character-codes and character-codes to bit patterns. You

will find a table of all 256 bit patterns and the corresponding

character-codes and corresponding decimal values in Appendix B.

You may check your success with the table.

The character-code system for identifying the various bit

patterns is* as you might know or have figured out, what in computer

circles is called hexadecimal. Numbers* when represented in

hexadecimal* are usually proceeded by a "$". $41 is the hex

representation for the ASCII code for the letter "A". This removes

any question as to whether the number is decimal or hexadecimal. From

now on we will follow that convention in this book.

There is another convention which is widely used to identify

the individual bits in a byte. The bits are numbered 0-7 from right

to left. The high-order bit is the 7-bit and the low-order bit is the

0-bit.

We discussed the way to represent the decimal numbers from 0

to 255. The same general technique may be used to represent numbers

from 0 to 65535. Instead of two hex characters representing one byte

of data* we need four hex characters representing sixteen bits or two

bytes. Now the first pair of hex characters may be followed by any of

256 pairs of hex characters ( $00 - $FF ). So the total number of

possible combinations of four hex characters is 256 times 256 or

65536. The address bus is sixteen bits wide. Which is why there are
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exactly 65536 unique addresses possible. Now, it is frequently useful

to be able to convert decimal addresses into hexadecimal. We saw how

to do it with a single byte of two hex characters (8 bits). We

divided the number by 16 to get the first character and the remainder

was the second character. The process is similar for going from a

number larger than 255.

We divide the number by 256 to get the first half of the

answer. This will be a number between 1 and 255. The remainder will

be the second half of the answer. Both of these decimal numbers can

then be converted to their hexadecimal counterparts by the dividing-

by-16 technique. These hex digits can be then easily converted to

bits (binary) by looking up the table or retrieving it from our

biological memory device.

Let's do an example: Say we want to get the binary value ( bit

configuration ) of the decimal number 47892. The first thing we do is

see how many times 256 will go into 47892. The answer is 187. The

remainder is 20. A line of BASIC code to do this computation would

be:

HA = INT ( NUM / 256 ): HB = NUM - HA * 256

HA is the first half of the answer in decimal. HB is the

second half. We still have to take 187 and 20 and break them into

their two hex components. We do this by dividing by 16. 187 / 16 =

11 with a remainder of 11. So the first two hex digits are $BB. 20 /

16 = 1 with a remainder of 4. So the complete answer is $BB14. The

binary equivalent of $BB14 is 1011 1011 0001 0100. To double check

our answer, we go back the other direction and convert $BB14 to

decimal. $14 = (i * 16) ♦ 4 = 20. $BB= < 11 * 16 ) + 11 = 176 + ii

= 187. (187 * 256 ) + 20 = 47872 + 20 = 47892. And that's the

number we started with. This process should be practiced. It is very

helpful in solidifying the understanding of hex and binary and their

relationships to decimal numbers.
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plus 0.

• How about going the other way? If we want to create the bit

pattern for some number in the range of 0 - 255* we only have to

divide the number by 16 to get the first character of the code

<remember to translate 10 thru 15 to A thru F>. Then the remainder of

the division is the second character. Now to get the bit pattern we

Just look it up in the little bit pattern table. Put the first four-

bit pattern together with the second and you have an eight bit pattern

which represents the numeric value. Not hard at all. Lets try it

with a few numbers. Take the number 169. How many times does 16 go

into 169? Right. And how is that represented in our single character

code? As the letter "A". The remainder from dividing 169 by 16 is 9.

So our character-code representation of 169 is "A9" and if we go to

the bit pattern table* we will see that the bit patterns are 1010

1001.

It is a valuable exercise to practice converting bit patterns

to character-codes and from character-codes to decimal and from

decimal to character-codes and character-codes to bit patterns. You

will find a table of all 256 bit patterns and the corresponding

character-codes and corresponding decimal values in Appendix B.

You may check your success with the table.

The character-code system for identifying the various bit

patterns is* as you might know or have figured out, what in computer

circles is called hexadecimal. Numbers* when represented in

hexadecimal* are usually proceeded by a "$". $41 is the hex

representation for the ASCII code for the letter "A". This removes

any question as to whether the number is decimal or hexadecimal. From

now on we will follow that convention in this book.

There is another convention which is widely used to identify

the individual bits in a byte. The bits are numbered 0-7 from right

to left. The high-order bit is the 7-bit and the low-order bit is the

0-bit.

We discussed the way to represent the decimal numbers from 0

to 255. The same general technique may be used to represent numbers

from 0 to 65535. Instead of two hex characters representing one byte

of data* we need four hex characters representing sixteen bits or two

bytes. Now the first pair of hex characters may be followed by any of

256 pairs of hex characters ( $00 - $FF ). So the total number of

possible combinations of four hex characters is 256 times 256 or

65536. The address bus is sixteen bits wide. Which is why there are






